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Abstract

Some basic ideas relevant to the dynamics of phase space and real space structures are presented

in a pedagogical fashion. We focus on three paradigmatic examples, namely; G.I. Taylor’s structure

based re-formulation of Rayleigh’s stability criterion and its implications for zonal flow momentum

balance relations; Dupree’s mechanism for nonlinear current driven ion acoustic instability and

its implication for anomalous resistivity; and the dynamics of structures in drift and gyrokinetic

turbulence and their relation to zonal flow physics. We briefly survey the extension of mean field

theory to calculate evolution in the presence of localized structures for regimes where Kubo number

K ' 1 rather than K � 1, as is usual for quasilinear theory.
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“We all know that the real reason universities have students is in order to educate the professors.”

John Archibald Wheeler

“Reward the sneezers who stand up and spread the ideas.”

Seth Godin, on viral marketing

I. INTRODUCTION AND BASIC CONSIDERATIONS

The aim of this tutorial is to introduce the ways we think about and describe relaxation,

transport and instability in a system consisting of an ensemble of localized structures. In-

deed, in simple terms, turbulence is usually better thought of as a ‘soup’ or ‘stew’ of ‘eddys,’

‘vorticies,’ ‘blobs,’ ‘clumps,’ ‘holes,’ etc. than as an ensemble of (very) weakly nonlinear

waves. However, in MFE, we almost always calculate using quasilinear theory, which is

based on the idea of turbulence as a random ensemble of waves. We follow this familiar

recipe in spite of the fact that at the same time, we often invoke or tacitly assume that

the strength of saturated turbulence given by mixing length guesstimates[1], which posit

that ṽ ∼ ∆c/τc. Here ṽ is a typical fluctuating velocity, ∆c is the correlation scale and τc

is the correlation time. Of course, such a mixing length criteria is simply another way to

write Kubo number K ' 1, where K = ṽτc/∆c. K ' 1 implies that the particle or fluid

element rotation time in a vortex structure is comparable to the lifetime of that structure,

while quasilinear theory assumes the lifetime is short compared to the rotation time (i.e.

τac < τb). Thus, it is difficult to see how K ' 1 and quasilinear theory can be mutually

compatible, despite perpetual claims to the contrary.

More generally, a structure such as an ‘eddy’ or ‘blob’ can be distinguished from a wave

in that an eddy does not correspond to the zero of a collective response function (dielectric),

i.e. ε(k, ω) = 0, while a wave does. MFE theory is obsessed with the zoology of linear waves

and instabilities in spite of the fact that, as noted above, concepts derived from localized

structures are frequently more germane to the true, physical dynamics of the real turbulent

state. Structures are usually thought to form in the process of nonlinear saturation of
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a. wave

k ·B = 0

b. eigenmode

FIG. 1. wave and eigenmode

instability. However, as we will discuss, localized structures are sometimes more efficient in

tapping free energy than linear waves are, and so structures can also be a mechanism for

triggering instability and relaxation. We will see that this property follows from the fact

that structures scatter energy and momentum differently than waves do, on account of the

fact the structure is localized in phase space. In the particular case of drift wave turbulence,

consideration of potential vorticity structures provides an illuminating alternative route to

understanding zonal flow generation via the conservation of momentum in drift wave-zonal

flow interaction.

Given the aphorism that “a picture is worth a thousand words” - and at least as many

equations - we deem it useful present a few relevant cartoons here, so as to put flesh on the

rather abstract concepts we have been discussing. Figure (1a) shows a wave and (1b) shows

an eigenmode localized at a k · B = 0 surface. These should be compared to cascading

eddys, shown in Figure (2a) or an isolated coherent vortex, shown in Figure (2b). Also

localized structures can interact with mean profiles. One example is shown in Figure (3),

where a localized gradient relaxation event (i.e. gradient flattening) generates a blob (i.e.

local quantity excess) propagating down the gradient and a void (i.e. local quantity deficit)

propagating up the gradient. Structures can form in phase space, as well. Figure (4) shows

a phase space density hole, in velocity space. Since total phase space density must be

conserved, the hole perturbation can grow if the centroid of the hole moves up the gradient.

We will refer back to these cartoons from time to time in this paper.

The reminder of this tutorial is organized as follows. In section II, we discuss the Rayleigh
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FIG. 2. eddy and vortex
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FIG. 3. void and bump

inflection point theorem. After reviewing the classic modal approach we present G.I. Tay-

lor’s far more physical and intuitive derivation based on considering the displacement of a

localized PV blob. As a bonus, from there we immediately derive basic insights into zonal

flow generation and the content of the Charney-Drazin non-acceleration theorem for wave-

mean flow interaction. In section III, we re-visit the current driven ion acoustic problem,

and discuss a nonlinear, structure-based instability mechanism which is complementary to

the text book example based on linear theory. We cast this story in terms of growth of

a granulation in phase space. The instability mechanism is nonlinear. We also consider

the growth of localized structures in the context of the new classic paradigm of the Berk-
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FIG. 4. hole in phase space

Breizman model. In particular, we suggest the possibility of a new nonlinear instability for

that model. In section IV, we discuss phase space density structures in the context of drift

and gyrokinetic turbulence. That section to some degree unifies the discussions in Section

II and Section III. Special attention is given to the relation of structure dynamics in kinetic

drift-zonal flow systems to the Charney-Drazin non-acceleration theorem discussed in sec-

tion II. In Section V, we briefly outline the Dupree-Lenard-Balescu theory for calculating

transport in the presence of phase space density granulations, where Kubo number K ∼ 1.

That section is short, as the subject is discussed at length in other recent tutorials. Section

VI is a brief concluding comment.

II. RAYLEIGH CRITERION, POTENTIAL VORTICITY, AND ZONAL FLOW

MOMENTUM

In this section, we first review the traditional ‘modal’ approach to the Rayleigh criterion,

then present a far more physical, ‘structure based’ approach first given by G.I. Taylor. We

then extend this line of thought to extract the essence of several key relations between wave

and zonal flow momentum.
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FIG. 5. Flow configuration

A. Something Old: Modal Derivation of Rayleigh Criterion

The time honored Rayleigh criterion[2–4], a necessary condition for inviscid shear flow

stability, is relevant to the flow configuration shown in Fig. 5.

Here q = ∇φ2 is the potential vorticity, so PV conservation is just d∇2φ/dt = 0. Straight

forward linearization then gives the Rayleigh equation for eigenmodes of the shear flow:(
∂y − k2x

)
φ̃k +

kx∂y〈q〉
ω − kxVx(y)

φ̃k = 0 (1)

Multiplying by φ̃∗k, integrating from −a to a, noting the no-slip boundary condition, and

writing ω = ωr + iγk explicitly, then gives

−
∫ a

−a
dy
(
|∂yφ̃k|2 + k2x|φ̃k|

)
+

∫ a

−a
dy
kx∂y〈q〉{(ωr − kxVx(y))− iγk}

(ωr − kxVx(y))2 + γ2k
|φ̃k|2 = 0 (2)

Eq. (2) is a complex equation, so both the real and imaginary parts of the lefthand side

must vanish. For the imaginary part, we have

γk

∫ a

−a
dy

kx∂y〈q〉
(ωr − kxVx(y))2 + γ2k

|φ̃k|2 = 0 (3)

Thus, if 〈q〉′ 6= 0 everywhere on [−a, a], γk = 0 necessarily, implying stability. For γk 6= 0

(i.e. instability), ∫ a

−a
dy

kx∂y〈q〉
(ωr − kxVx(y))2 + γ2k

|φ̃k|2 = 0 (4)

is required. This implies that 〈q〉′ must change sign at some point on the interval [−a, a],

i.e. for example, 〈q〉′ < 0 on [−a, x] and 〈q〉′ > 0 on [x, a]. Since 〈q〉′ = ∂y〈∂2yφ〉 = ∂2y〈Vx(y)〉,
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FIG. 6. Displacement of PV blob

the slope of the vorticity must change somewhere in [−a, a], or equivalently the mean flow

profile must have an inflection point somewhere on [−a, a]. We have arrived at the essence of

the famous Rayleigh inflection point theorem, namely that a necessary condition for inviscid

instability of a shear flow is that the flow must have an inflection point. Fjortoft later showed

that, for instability, the inflection point must be a vorticity maximum[2, 4].

B. Something Newer: G.I. Taylor’s Stability Criterion Derived from PV Dynamics

The Rayleigh inflection point theorem is based entirely on manipulations of the equation

and so is not very satisfying from a physics perspective. More substantively, Rayleigh’s

criterion does not address the possibility that excitons or structures other than linear eigen-

modes (i.e. waves) may be the optimal ones with which to tap the available free energy in

the shear. This brings us to G.I. Taylor’s argument from his famous paper of 1915[5]. Tay-

lor constructed a very physical and intuitive description of the consequence of infinitesimal

displacement of a ‘blob’ or ‘slug’ of potential vorticity (PV) in a system which locally con-

serves PV. The class of such systems includes non-dissipative 2D fluids, quasi-geostrophic

fluids, and both Hasegawa-Mima and Hasegawa-Wakatani system plasmas. The crux of

Taylor’s argument is on the analysis of consequences for the mean flow when a ‘blob’ of PV

is displaced up or down the mean cross-stream PV gradient, as shown in Fig. 6.

To address the effect on the flow, consider the momentum balance equation for inviscid,
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isentropic displacements

∂V

∂t
+ V · ∇V = −∇h (5a)

where h is enthalpy (i.e. dh = dp/ρ). Equivalently,

∂V

∂t
= −∇

(
h+

V 2

2

)
+ V × ω (5b)

So, for the mean component,

∂〈V〉
∂t

= 〈V × ω〉 (5c)

where we assumed symmetry in x̂ direction. For the zonal component:

∂〈Vx〉
∂t

= 〈Ṽyω̃z〉 (6a)

or equivalently

∂〈Vx〉
∂t

= 〈Ṽy q̃〉 (6b)

since q̃ = ω̃z for q = ωz + βy, as for quasigeostrophic (QG) fluids. Note that since ω̃z =

−(∂2x + ∂2y)φ̃, performing the zonal average gives

∂〈Vx〉
∂t

= −∂y〈ṼyṼx〉 (6c)

Eqs. (6a), (6b), and (6c) state the famous, and even useful, Taylor Identity.

〈Ṽyω̃z〉 = 〈Ṽy q̃〉 = −∂y〈ṼyṼx〉 (6d)

The Taylor Identity states that for a 2D or QG, etc fluid with conserved vorticity or PV, the

cross zonal stream flux of PV equals the along-stream component of the Reynolds force. Tay-

lor’s identity establishes that vorticity transport is the process which controls the dynamics

of zonal flows and their self-acceleration.

Returning to the issue of stability, we note that to utilize Eq.(6b), we must calculate q̃.

Now

q̃ = (PV of vortex blob at y)− (Mean PV at y) (7a)

Since q̃(y) is displaced to y from y0, and since dq/dt = 0 with initial fluctuations negligibly

small, we have

(PV of vortex blob at y) = 〈q(y0)〉 (7b)
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Also, for small y − y0 ≡ δy, we can ‘Taylor’ expand:

〈q(y)〉 ∼= 〈q(y0)〉+ (y − y0)
d〈q〉
dy

∣∣∣∣
y0

(7c)

So

q̃ ∼= −δy
d〈q〉
dy

∣∣∣∣
y0

(7d)

Since the choice of y0 is arbitrary, we hereafter drop the subscript. Thus, we finally arrive

at

∂〈Vx〉
∂t

= −〈Ṽyδy〉
d〈q〉
dy

(8a)

or, taking the fluid parcel displacement ξ̃ = δy and noting ∂tξ̃ = V,

∂〈Vx〉
∂t

= −

(
∂t
〈ξ̃2〉

2

)
d〈q〉
dy

(8b)

Instability of the system to the initial PV slug displacement requires, of course, ∂t〈ξ̃2〉 > 0.

At the same time, the net momentum of the flow is conserved, so

∂

∂t

∫ a

−a
dy〈Vx〉 = −

∫ a

−a
dy

(
∂t
〈ξ̃2〉

2

)
d〈q〉
dy

= 0 (9)

Since ∂t〈ξ̃2〉 > 0, total momentum conservation requires that ∂〈q〉/∂y must change the sign

at some point on the interval [−a, a]. For q = ∇2φ, this is equivalent to requiring that the

flow has an inflection point.

Taylor’s derivation of the Rayleigh result is notable in that:

1. it makes no reference to waves or eigenmodes, but rather is formulated in terms of the

displacement of a ‘blob’ or ‘slug’ of vorticity. Of course, it is limited to consideration

of a small displacement.

2. it directly links stability to flow evolution, and so is useful for obtaining more general

insights into dynamics.

The physical clarity and simplicity of Taylor’s derivation make it far more satisfying than

Rayleigh’s. We should mention here that there were at least two notable follow-ons to

Taylor’s analysis. First, C.C. Lin[6] showed that a flow profile inflection point is needed
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to allow the interchange of two vortices without a restoring force, so that the shear layer

relaxes. Lin’s analysis was based on using the Biot-Savart law to calculate the force on

individual vortex elements. Later, V.I. Arnold[7] presented a famous nonlinear stability

analysis which showed that the existence of a flow profile with an inflection point is still a

necessary condition for instability.

C. Something Further: Zonal Flow Evolution and Wave-Flow Interaction

Recall that Eq.(8b) states that

∂〈Vx〉
∂t

= −

(
∂t
〈ξ̃2〉

2

)
d〈q〉
dy

(10)

and so relates the mean zonal flow evolution to the mean PV gradient and the evolution of

the displacement of a fluid element[8]. Note that since the vortex element or PV diffusivity

Dq is, by definition,

Dq = ∂t
〈ξ̃2〉

2
(11a)

it follows that

∂〈Vx〉
∂t

= −Dq
d〈q〉
dy

(11b)

Eq. (11b) is an important, general result which states that a latitudinal diffusive flux of

potential vorticity will accelerate a zonal flow. This is in accord with the general concept

that links zonal flow formation to PV mixing. Indeed, recently M. McIntyre and R.Wood[9]

published a lengthy discussion of this issue which generalizes, but draws heavily upon,

Taylor’s pioneering insights. Eq. (11b) prescribes the direction of the zonal acceleration.

For d〈q〉/dy > 0, the acceleration is westward, while for d〈q〉/dy < 0, the acceleration is

eastward. In particular, this suggests that the beta effect will drive a westward circulation

(β > 0). In general, any PV mixing process which tends to increase the variance of the

latitude of a fluid particle (i.e. ∂t〈ξ̃2〉 > 0), will accelerate a zonal flow opposite to d〈q〉/dy.

Finally, we observe that Eq. (11b) can also be obtained using the Taylor Identity (Eq. (6d))

and a mean field calculation (i.e. quasilinear theory) for the vorticity flux. We leave this as

an exercise for the readers.
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Taylor’s argument for zonal flow generation is much more fundamental and elegant than

modulational instability methods and the other cranks we love to turn[10]. The only two

essential elements in his argument are local PV conservation along fluid trajectories and PV

mixing, i.e. the net irreversible transport of potential vorticity. This begs the question of

what is the origin of irreversibility in the PV flux? Equivalently, what is the microscopic

mechanism for PV mixing? In the language of MFE methodology, this boils down to cal-

culating the cross-phase in the PV flux 〈Ṽy q̃〉. There are several viable candidates, which

include:

1. direct dissipation, as by viscosity

2. nonlinear coupling to small scale dissipation by the forward cascade of potential vor-

ticity.

3. Rossby or drift wave absorption at critical layers, where ω = kx〈Vx(y)〉. This is

essentially Landau resonance. Transport or mixing of PV region requires the overlap

of neighboring critical layers, leading to stochastization of flow streamlines.

4. stochastic nonlinear wave-fluid element scattering, which is analogous to transport

induced by nonlinear Landau damping.

Note that the more general concepts are stochasticity of streamlines and forward potential

enstrophy cascade to small scale dissipation. Interestingly, when looking at the phenomenon

of zonal flow self-organization from the standpoint of PV transport and mixing, it is the

forward enstrophy cascade which is critical, and not the inverse energy cascade, as is con-

ventionally mentioned!! Finally, we observe that zonal flow acceleration is not necessarily

a strongly nonlinear process. PV mixing can occur via wave absorption, and can be man-

ifested in weak turbulence, as an essentially quasilinear process. In this regard, the reader

should consult [11].

Eqs. (10) and (11b) also lead to a useful and instructive momentum conservation theorem
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for wave-mean flow interaction. From these, we immediately see that

∂

∂t

{
〈Vx〉+

〈ξ̃2〉
2

∂〈q〉
∂y

}
= 0 (12a)

Using the relation

q̃ = −ξ̃ ∂〈q〉
∂y

(12b)

which relates PV perturbation to fluid element displacement, we can then re-write Eq. (12a)

as

∂

∂t

{
〈Vx〉+

〈q̃2〉
2(∂〈q〉/∂y)

}
= 0 (12c)

It is interesting then to note that for ∂〈q〉/∂y = β and q̃ = ∇2φ̃, we find from Eq. (12c)

∂

∂t

{
〈Vx〉 −

∑
k

kxNk

}
= 0 (12d)

where

Nk =
E(k)

ωk

(12e)

is the wave action density for Rossby waves. E(k) is simply the Rossby wave energy density.

We see, then that Eq. (12d) is a momentum theorem which ties the zonal flow momentum

〈Vx〉 to the zonal wave momentum density kxNk, which is the negative of the pseudomomen-

tum. Eq. (12d) states that the zonal flow cannot ‘slip’ relative to the wave momentum den-

sity, or equivalently, that the quasi-particle field of the wave packets is frozen into the zonal

flow. Eq. (12d) is a limiting case of the Charney-Drazin non-acceleration theorem, which

states that in the absence of sources and sinks, the zonal flow momentum can change only

if the wave momentum density varies in time. The full Charney-Drazin theorem[4, 12, 13]

for the QG equation is:

∂

∂t

{
〈Vx〉+

〈q̃2〉
2(∂〈q〉/∂y)

}
= −ν〈Vx〉+

1

〈q〉′
{
〈f̃ 2〉τc − µ〈(∇q̃)2〉 − ∂y〈Ṽy q̃2〉

}
(13)

Here f̃ is the stochastic forcing which drives the system, τc is its correlation time, µ is the

viscosity, and ν is the scale invariant drag. The term ∂y〈Ṽy q̃2〉 accounts for the local con-

vergences and divergences in the flux of potential enstrophy - i.e. turbulence spreading[14].

Physically speaking, Eq. (13) states that the sum of the flow momentum and the wave
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pseudomomentum is conserved up to frictional flow damping and turbulence excitation

(∼ 〈f̃ 2〉τc), dissipation (∼ µ〈(∇q̃)2〉) and spreading. Thus, stationary turbulence can drive

a zonal flow only by forcing, dissipation or convergence of spreading, all of which break the

local freezing-in law for quasi-particle momentum and flow momentum. For stationary flow

and turbulence, we find

〈Vx〉 =
1

ν〈q〉′
{
〈f̃ 2〉τc − µ〈(∇q̃)2〉 − ∂r〈Ṽrq̃2〉

}
(14)

Thus, the flow direction is ultimately set by 〈q〉′ and the spatial distribution of sources and

sinks. Note that some finite stand-off distance between source and sink is required for a finite

scale shear flow. In simple drift wave turbulence, this is usually provided by the disparity

and distance between the electron coupling region of the wave and the ion Landau resonance

point, where wave absorption occurs.

Formally, the Charney-Drazin theorem is a consequence of, and is derived from, poten-

tial enstrophy density balance. The pseudomomentum density is simply the fluctuation

potential enstrophy density divided by 〈q〉′. Thus, we see that a physical perspective on the

pseudomomentum is that the fluctuation potential enstrophy density sets its size, while 〈q〉′

defines its direction or orientation. Alternatively, note that the pseudomomentum density

is a measure of the effective ‘roton’ intensity field. In this vein, it is easy to see why poten-

tial enstrophy flux convergence (∼ ∂r〈Ṽrq̃2〉) affects the zonal momentum balance, since it

alters the roton quasi-particle density. Interestingly, drift waves have the character of both

types of quasiparticles: namely phonons, via the relation Nk = E(k)/ωk and rotons, via

the proportionality of pseudomomentum to 〈q̃2〉/〈q〉′[15]. Ultimately, this dual character is

a consequence of the fact that both energy and potential enstrophy are inviscid invariants

of the system.
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III. DYNAMICS OF PHASE SPACE STRUCTURES

A. Basic Concepts

In this section, we discuss phase space structures in Vlasov turbulence[16–18]. That there

should be a close correspondence between PV dynamics in QG and drift wave turbulence

on one hand, and Vlasov turbulence on the other hand, is no surprise, since both systems

are governed by the incompressible advection of a conserved quantity along Hamiltonian

trajectories, with feedback via a Poisson equation. Table I compares the two systems and is

self-explanatory. One point which should be emphasized is that in addition to Hamiltonian

advection of a conserved scalar field, both QG and Vlasov turbulence satisfy a Kelvin’s

theorem and thus have a conserved circulation. We remark that Donald Lynden-Bell was

the first to prove a Kelvin’s theorem for the Vlasov equation as an appendix to his pioneering

paper[19] on violent relaxation in 1967. These are fundamental to several of the common

features of their dynamics. In particular, the conservation of q, the total PV density and

of f , the total phase space density, respectively leads to interesting relations concerning the

evolution of a localized blob or structure, as well as its interaction with the mean gradient,

d〈q〉/dy or ∂〈f〉/∂v. For PV, we have (〈q〉 is the mean distribution)

d

dt
(〈q〉+ δq) = 0 (15a)

So

∂

∂t

∫
d2xδq2 = −2

d

dt

∫
d2x〈q〉δq (15b)

Expanding 〈q〉 around a localized point y0, we have

〈q〉 = 〈q(y0)〉+ (y − y0)
d〈q〉
dy

∣∣∣∣
y0

≡ q0 + δy
dq0
dy0

(15c)

where q0 is a static, initial PV distribution. Then Eq.(15b) gives

∂

∂t

∫
d2xδq2 = −2

dq0
dy0

∫
d2x〈Ṽyδq〉 (15d)

The reader can easily see that after utilizing the Taylor Identity (Eq.(6d)) and the mean flow

evolution equation with scale independent drag, we recover a limit of the Charney-Drazin
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QG system Vlasov system

Basic Equation ∂tq + {q, φ} − ν∇2q = 0 ∂tf + {f,H} = C(f)

Field PV, q = βy +∇2φ distribution function

q = lnn0(r) + φ− ρ2s∇2φ f(x, v, t)

Evolution {q, φ} {f,H}

Dissipation/Coarse Graining −ν∇2 C(f)

Poisson Eq./Feedback q = q0 + βy +∇2φ ∇2φ = −4πn0q
∫
fdv

Kelvins’ Theorem
∮

(V + 2Ωa sin θ)dl = const
∮
v(s) · dx = const

Decomposition Planetary + Relative f = 〈f〉+ f̃

⇒ q = βy + ω

Physical Element vortex granulation

→ hole, clump

Conservation
∫
qda phase volume

(i.e. total charge)

TABLE I. Comparison of PV and Vlasov system

theorem. Note that Eq.(15d) can be re-written as:

∂

∂t

∫
d2xδq2 = 2

(
dq0
dy

)2 ∫
d2x

d

dt

〈δy2〉
2

(15e)

For the corresponding case of a Vlasov plasma structure[17], we have:

f = 〈f〉+ δf (16a)

So

∂

∂t

∫
dvδf 2 = −2

d

dt

∫
dv〈f〉δf (16b)

Again expanding,

〈f〉 = f0 + (v − u)
∂f0
∂v

∣∣∣∣
u

= f0 + (v − u)
∂f0
∂u

(16c)

we find

∂

∂t

∫
dvδf 2 = −2

(
∂f0
∂u

)
d

dt

∫
dv(v − u)δf ≡ −2

(
∂f0
∂u

)
d

dt

〈p〉
m

(16d)
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Here 〈p〉 is the blob averaged momentum. In deriving Eq.(16d), we have assumed that the

characteristic oscillation frequency for an individual particle in the localized phase space

structure (i.e. “bounce frequency”) is high compared to the structure growth rate and the

mean relaxation rate, i.e. ωb � (∂tδf)/δf, (∂t〈f〉)/〈f〉. Eq.(16d) is remarkable in that it

links local structure growth to the evolution of net, local momentum. Depending upon the

signs of ∂f |0/∂u and the possibilities for d〈p〉/dt, structure growth or damping is possible.

The key to this is the nature of possible momentum exchange channels.

B. Local Structure Growth

In this section, we discuss the dynamics of nonlinear growth of localized Vlasov structures.

Before launching into terra nova, we revisit terra firma, so as to place new ideas in the

familiar (i.e. boring) context of the same old same old. A staple of Vlasov microstability

theory is the current driven ion-acoustic (CDIA) instability[18, 20], which is also important

for anomalous resistivity. As shown in Fig.7, CDIA is essentially a battle between inverse

electron resonance and ion resonance. The shift in the electron mean drift velocity vd must

satisfy vd > cs, so ω − kvd < 0. For

ε = εr + iεIM (17a)

and

γk = − εIM
(∂εr/∂ω)|ωk

= − εeIM + εiIM
(∂εr/∂ω)|ωk

(17b)

the algebra confirms the picture of Fig.7, namely that the shift vd must be large enough

so that inverse electron Landau damping exceeds the positive ion Landau damping. As we

all learned in kindergarten, this is most easily realized for minimal overlap of the ion and

electron distribution functions. From the perspective of anomalous resistivity, the requisite

momentum exchange is between electrons and waves, as opposed to collisional resistivity

in which electrons exchange momentum with ions, by particle collisions. CDIA saturation

requires some sort of nonlinear dissipation process, including possibly nonlinear ion Landau

damping, in order to dispose of the wave energy.
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FIG. 7. CDIA

The situation for localized structures is different, since several possible channels for mo-

mentum exchange exist. In general, momentum conservation implies

d

dt
(〈pi〉+ pe + pw) = 0 (18)

where we assumed that our blob was an ion structure (this choice is arbitrary!) and pe,

pw correspond to electron and wave momentum, respectively. Thus in a one species plasma

(dynamically), with u off wave resonance, d〈pi〉/dt = 0 so structure growth is impossible.

However, in a two species plasma more interesting things can happen. In particular, for

ions:

d

dt
〈pi〉 = −1

2

mi

(∂f0,i/∂v)|u
∂t

∫
dvδf 2

i (19a)

and for electrons

d

dt
pe = −1

2

me

(∂f0,e/∂v)|u
∂t

∫
dvδf 2

e (19b)

So momentum conservation (with ∂pw/∂t ∼= 0) requires

me

(∂f0,e/∂v)|u
∂t

∫
dvδf 2

e = − mi

(∂f0,i/∂v)|u
∂t

∫
dvδf 2

i (19c)

Thus, we see that if:

∂fi,0
∂v

∣∣∣∣
u

∂fe,0
∂v

∣∣∣∣
u

< 0 (19d)
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FIG. 8. Ion hole growth in current carrying Vlasov plasma

- i.e. the two mean distributions have opposite slopes at the structure velocity - growth of

δf is possible[17]. This is essentially a statement of availability of free energy - i.e. the

presence of a finite vde. Here, growth of localized structures occurs by collisionless inter-

species momentum exchange, which move the structure up (for hole) or down (for blob)

the mean phase space density gradient. Conservation of phase space density then requires

that the fluctuation amplitude grows. See Fig.8 for a demonstration. It is interesting to

contrast the conditions for structure growth with the familiar conditions for CDIA wave

growth. Structure growth requires strong overlap of electron and ion distributions, with op-

posite slope. Overlap of 〈f〉 facilitates inter-species momentum exchange, which can propel

a structure up or down the gradient. CDIA, by contrast, requires minimal overlap for insta-

bility. Minimal overlap reduces the stabilizing effects of ion Landau damping. Also, we note

that Eq.(19a) effectively states ∂p/∂t ∼ ∂t
∫
dvδf 2/(∂f0/∂v)|u, so we see the appearance of∫

dvδf 2/(∂f0/∂v)|u as a pseudomomentum. Here, however, we are not necessarily speaking

of linear waves, but of more general types of fluctuations. Hence this observation attests to

the fact that the pseudomomentum is a more general concept. It is comforting, however,

to note that plugging the non-resonant linear response in for δf recovers the conventional

expression for wave momentum density as derived from small amplitude theory[21].

There is an old injunction to lecturers which advises: ‘Don’t try to prove everything, but

do try to prove at least one thing’. Thus, we now try to calculate the growth rate of an ion

18



phase space structure (hole) driven by an electron current. From Eq.(19a), we have

1

2

mi

(∂f0,i/∂v)|u
∂t

∫
dvδf 2

i = −d〈pi〉
dt

=
dpe
dt

(20)

Now, while ion orbits are trapped, forming a phase space vortex, we can hope to claculate

the orbits of the electrons (with much smaller inertia!) by assuming weak deflection and

using mean field theory. It is a standard crank to then show

∂〈fe〉
∂t

=
∂

∂v
D(v)

∂

∂v
〈fe〉 (21a)

where

D(v) =
q2

m2
e

∑
kω

〈E2〉kωπδ(ω − kv) (21b)

is the usual quasilinear diffusion coefficient (but note ω 6= ω(k) here!). Then,

dpe
dt

= −me

∫
dvD(v)

∂

∂v
〈fe〉

' −meD(u)
∂f0,e
∂v

∣∣∣∣
u

∆u (21c)

where we have assumed the scattering spectrum to have a phase velocity distribution peaked

near u. ∆u is the approximate width of the distribution. Then combining Eqs. (20) and

(21c) gives:

∂t

∫
dvδf 2

i
∼= −

me

mi

∂f0,i
∂v

∣∣∣∣
u

∫
dvD(v)

∂

∂v
〈fe〉 (21d)

∼= −
me

mi

∆uD(u)
∂f0,i
∂v

∣∣∣∣
u

∂f0,e
∂v

∣∣∣∣
u

(21e)

Once again, we see that the need for strong electron and ion distribution function overlap

at a location of opposite slope - the condition for available free energy. To extract the key

scalings of the growth rate, we note from Eq.(21b) that D(v) ∼ 〈Ẽ2〉 ∼ 〈δf 2〉(∆vT )2. Here

∆vT is extent of the phase space structure in velocity. Loosely speaking, it corresponds to a

self-trapping width, i.e. the width in velocity of a bunch of resonant particles which define

a structure[17]. In resonance broadening theory[22], for a 1D plasma, we have:

1. the spectral auto-correlation time

τac =

[
∆k

(
dω

dk
− ω

k

)]−1
19



which defines the time of self-coherence of a wave packet

2. the wave particle correlation time

τc = (k2D)−1/3

which defines the time it takes for a particle to scatter one wavelength, i.e. to decor-

relate from the wave by random kicks in velocity

3. the 〈f〉 relaxation time, τrelax

We always assume the ordering τac < τc < τrelax. In the vein, then, ∆vT is defined by

∆vT =
1

kτc
(22)

Of course,
∫
dvδf 2 ∼ ∆vT δf

2, so the growth rate has the form

γ ' k∆vT

[
−∂f0,i

∂v

∂f0,e
∂v

]
u

F (mess) (23)

Here F (mess) is a complicated function related to the details of the phase space structure,

and is of no instructive value. Note that the growth rate is nonlinear, i.e. γ ∼ k∆vT ∼ ωb ∼

(qφ/m∆x)1/2. Here φ is the self-potential of the phase space structure, as determined by

Poisson’s equation, and ∆x is the spatial extent of the structure. Note we tacitly define a

‘structure’ as a blob/hole perturbation of size δf , spatial extent ∆x and extent in velocity

∆vT . Obviously, φ̃self ∼ δf∆vT/ε(k, kv) where ε(k, kv) is the dielectric function evaluated

at the ballistic frequency of the structure centroid motion. Eq.(23) suggests that structure

growth will continue until the free energy source is depleted. Thus, we can expect an ion

hole to be accelerated up the velocity profile till (∂f0i/∂v)(∂f0,e/∂v)→ 0.

As mentioned previously,
∫
dv[δf 2/(∂f0/∂v)] constitutes a pseudomomentum or effective

dynamical pressure for the structure. From the Vlasov equation, we can immediately show

that

∂t

∫
dv
〈δf 2

i 〉
∂f0/∂v|u

= − q

mi

〈Ẽδni〉 (24a)
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The RHS is, of course, simply the force on the ions, so we thus arrive at a ‘Charney-Drazin’

theorem for Vlasov turbulence

d

dt

{∫
dv
〈δf 2

i 〉
∂f0/∂v|u

+
〈pi〉
mi

}
= 0 (24b)

We can trivially derive a corresponding relation for electrons, and then use momentum

balance to re-derive Eq.(24b). The point of this observation is to illustrate the close cor-

respondence between the Charney-Drazin theorem and the theory of nonlinear phase space

structure growth. Both are grounded in concepts of fluctuation pseudomomentum and the

conservation of an effective phase space density (q or f) along Hamiltonian trajectories.

Thus, it is not surprising that one should reduce to the other.

Another topic worthy of mention at this stage is the relation of phase space structure dy-

namics to the Berk-Breizman (B-B) model[23–26]. The B-B model is a 1D model, including

resonant particles, waves (with damping), and collisions. It represents the present day ex-

tension of classic linear bump-on-tail problem[27, 28], the Laval-Pesme extension thereof[29],

and the traveling wave tube system studied experimentally by Malmberg, et. al.[30]. Con-

structed to mimic the essential features of resonant particles in Toroidal Alfven Eigenmodes

in a simpler, more tractable context, the B-B hides a wealth of physics in the ‘plain paper

wrapping’ of a simple model. In particular trapping, structure formation and cyclic bursts

are all possible. The basic equations of the B-B model are:

∂f

∂t
+ v

∂f

∂x
+ E

∂f

∂v
= C(f − f0), (25a)

the collision operator

C(f − f0) =
ν2f
k

∂

∂v
(f − f0) +

γ3d
k2

∂2

∂v2
(f − f0), (25b)

and the effective Poisson equation (really displacement current relation)

∂E

∂t
= −

∫
dvv(f − f0)− 2γdE. (25c)

Here γd is the external damping associated with all ‘other’ processes, including wave damp-

ing, second species, etc. Collisions can be important here, as a means to limit plateau

persistence in time and to de-trap particles.
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Ignoring collisions, an analysis like that given above yields

∂t

∫
dv〈δf 2〉 = − ∂f0

∂v

∣∣∣∣
u

∫
dv〈Ẽδf〉 (26a)

where we take δf located at speed u localized in velocity relative to 〈f〉, i.e. ∆v < vTh.

Then, Eq.(25c) gives

(−iω + 2γd)Ek,ω = −
∫
dvvδf (26b)

So

∂t

∫
dv〈δf 2〉 = 2γd

∂f0
∂v

∣∣∣∣
u

∫
dv′
∫
dv
v′〈δf(v′)δf(v)〉
(ku)2 + (2γd)2

(26c)

Taking dv ∼ ∆v, v′ ∼ u, ω ∼ ku etc. then gives

γ ∼= (∆v)
∂f0
∂v

∣∣∣∣
u

2γdu

(ku)2 + (2γd)2
(26d)

Of course, we see there is no free lunch - i.e. there must be free energy, so (∂f0/∂v)|u > 0 is

required for instability. However, we do note that:

1. the growth is nonlinear, i.e. γ ∼ ∆v

2. linear instability is not required, i.e. γ can be positive here even if γL,0 − γd < 0,

where γL,0 = π(∂f0/∂v)|ω/k/2k2 is the usual bump-on-tail drive rate.

We also note that the sign of δf and the relation between δf and ∆v must be determined

by an analysis of the condition for Jeans equilibrium. We remark here that it would be

interesting to explore the effects of collisions on the B-B nonlinear structure growth process.

IV. PHASE SPACE STRUCTURE DYNAMICS IN DRIFT TURBULENCE

In this section, we extend our discussion of phase space structure dynamics from the case

of 1D to the more relevant problem of drift turbulence. This is a challenging, vast and still

developing subject. Thus, we limit our treatment to: a.) the presentation and discussion of

the Darmet model, a useful prototype which is both simple and relevant, b.) a discussion

of the dynamics of zonal flow formation induced by relaxation of a localized structure and

the relation of this process to flow momentum plus pseudomomentum conservation, c.) a

calculation of drift structure growth, including both spatial and velocity scattering.
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A. Introducing the Darmet Model

The Darmet model[31], which is really an extended version of the Tagger-Pellat[32]-

Diamond-Biglari[33] model descibes the dynamics of f(x, y, E, t), which corresponds to a

bounce averaged trapped ion distribution function. The basic equations are

∂tf + vd∂yf + {f, φ} = C(f) (27a)

αe(φ− 〈φ〉y)− ρ2∇2φ =
2

neq
√
π

∫ ∞
0

dE
√
Ef − 1 (27b)

with heat flux Q matched according to:

Q = −χcoll〈T 〉′ +
∫
dE
√
EE〈Ṽrδf〉 (27c)

given by the sum of turbulent and neoclassical processes. Note that vd = vd,0(E/Eth) is

an energy dependent precession drift velocity. ρ2∇2 accounts for polarization charge, due

to both FLR and finite banana width. The linear waves manifested by the Darmet model

are trapped ion ITG modes, and the model is easily extended to include non-Boltzmann

electron response. Dissipative trapped electron dynamics are of particular relevance and

simplicity. In the collisionless limit, irreversibility appears here as a consequence of trapped

ion precession drift resonance. Note that the constrained nature of the bounce averaged

dynamics can force long particle-spectra auto-correlation times, i.e.

∆(ω − ωd) ∼=∆kθ

∣∣∣∣ dωdkθ − vd,0 EEth
∣∣∣∣

∼=∆kθ

∣∣∣∣ dωdkθ − ω

kθ

∣∣∣∣ (28a)

so τac ∼ (|dω/dkθ − ω/kθ|∆kθ)−1 and the Kubo number K is

K =
ṽ

|dω/dkθ − ω/kθ||∆kθ|∆r

(28b)

Given the weakly dispersive character of long wavelength trapped ion modes, it is very easy

for K >∼ 1 here, even for broad spectra. Thus, quasi-coherent phase space structures are to

be expected in the Darmet model.
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To form a momentum theorem for the Darmet model, we exploit the connection between

polarization charge and fluid vorticity. Balance of 〈δf 2〉 (akin to enstrophy balance in QG

turbulence!) implies

∂t〈δf 2〉+ ∂r〈ṽrδf 2〉 − 〈δfC(δf)〉 = −〈Ṽrδf〉〈f〉′ (29a)

so ∫
dE

√
E

〈f〉′
{
∂t〈δf 2〉+ ∂r〈ṽrδf 2〉 − 〈δfC(δf)〉

}
= −〈ṽrδni〉 (29b)

where δni is the total ion guiding center density. Then the gyrokinetic Poisson equation and

our friend the Taylor Identity allow

δφ− ρ2∇2δφ =
2

neq

∫
dE
√
Eδfi (29c)

and

〈ṽrδni〉 = −〈ṽrρ2∇δφ〉 (29d)

so, with zonal flow momentum balance

〈ṽrδni〉 = ∂t〈Vθ〉+ ν〈Vθ〉 (29e)

we finally arrive at the Charney-Drazin Theorem for zonal flows the Darmet Model:

∂t {KPD + 〈Vθ〉} = −ν〈Vθ〉 −
∫
dE

√
E

〈f〉′
{
∂r〈ṽrδf 2〉 − 〈δfC(δf)〉

}
(29f)

Here

KPD =

∫
dE
√
E
〈δf 2〉
〈f〉′

(29g)

is the kinetic ‘phasetrophy’ Density. Of course, 〈f〉′ = ∂r〈f〉. This strange name is motivated

by the obvious resemblance of KPD to potential enstrophy density, which follows from the

duality between f in Vlasov turbulence and q in QG turbulence. Given the close connection

between pseudomomentum (or wave activity density) and potential enstrophy density in QG

turbulence (as discussed in Section II), it is no surprise that KPD corresponds to a kind of

kinetic pseudomomentum, formulated directly in terms of δf , with no-apriori linearization
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or small amplitude assumption. To see this, note that in the small amplitude, non-resonant

limit for waves:

δfk = − 1

−iωk

ṽr,k〈f〉′ (30a)

so

KPD =

∫
dE
√
E〈ṽ2r,k〉

〈f〉′

ω2
k

∼ −kθ
E(k)

ωk

(30b)

Thus KPD reduces correctly to pseudomomentum or the negative of the linear wave mo-

mentum density in the small amplitude limit. Note that pk,θ = kθNk, where Nk = E(k)/ωk

is the wave action density. Eq.(29f) constitutes a non-acceleration theorem for zonal flows

in the Darmet Model. In particular, in the absence of KPD evolution, kinetic turbulence

spreading or collisions, one cannot accelerate or maintain (against drag) a stationary zonal

flow. Alternatively, apart from spreading and collisions, zonal flow growth requires decay of

KPD. Thus, we again meet the idea of a law constraining the slippage of a quasi-particle

gas relative to the zonal flow.

At this point, the reader - if conscious at all - may be groping for a more physical insight

into the nature of KPD. Interestingly, a similar quantity appears in the Antonov Energy

Principle[34] for collisionless self-gravitating matter, as discussed in the theory of stellar

dynamics[35]. For that energy principle,

δW =

∫
d3x

∫
d3v

δf 2

|F0|′
−G

∫
d3xd3x′d3vd3v′

f(x,v)f(x′,v′)

|x− x′|
(31)

consists of a fluctuation dynamic pressure term and a self-gravity term. Clearly, the former

is the KPD for an unmagnetized plasma. The competition in δW is the usual and familiar

one for Jeans instabilities, namely self-gravity vs. dynamical pressure. A similar KPD term

appears in the Kruskal-Oberman Energy Principle[36]. Thus, we see that KPD may be

thought of as a kinetically founded dynamical pressure.

To conclude this section, it is instructive to compare the Charney-Drazin theorems for

Hasegawa-Mima model and Darmet model drift wave turbulence. The relation for H-M

turbulence is, from Eq.(13)

∂

∂t
{WAD + 〈Vθ〉} = −ν〈Vθ〉 −

1

〈q〉′
{
〈f̃ 2〉τc − µ〈(∇q̃)2〉 − ∂r〈Ṽrq̃2〉

}
(32a)
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where WAD = 〈q̃2〉/〈q〉′, while for the kinetic Darmet model

∂t {KPD + 〈Vθ〉} = −ν〈Vθ〉 −
∫
dE

√
E

〈f〉′
{
∂r〈ṽrδf 2〉 − 〈δfC(δf)〉

}
(32b)

where KPD =
∫
d3v〈δf 2〉/〈f〉′. The correspondence is obvious, thus confirming that con-

servation of momentum and phase space density really are the key common elements.

B. Phase Space Structures and Zonal Flows

The physical interpretation of KPD becomes problematic for resonant particles. This

brings us to the case of a single phase space structure in the Darmet-Model or, more generally,

drift wave turbulence. We consider a localized (in phase space!) ion hole or blob, with

δfi = δf((x− x0)/∆x, (E −E0)/∆E), and proceed from phase space density conservation,

as before. Thus

df

dt
=

d

dt
(f0 + δf) = 0 (33a)

so

∂t

∫
dE
√
E〈δf 2〉 = −2

d

dt

∫
dE
√
Ef0δf (33b)

and then

f0 = f0(x0) + (x− x0)
∂f0
∂x

∣∣∣∣
x0

+ ... (33c)

We thus have

∂t

∫
dE
√
E〈δf 2

i 〉 = −2〈ṽrδni〉
∂f0
∂x

∣∣∣∣
x0

(33d)

where d(x− x0)/dt = ṽr,
∫
dE
√
Eδfi = δni and assumptions similar to those in Section III

apply. Now, a key point enters via the gyrokinetic Poisson equation[37, 38], which relates

ion guiding center density δni to electron density δne and polarization charge density. Thus

−ρ2∇2φ̃ = δni − δne (33e)

So

∂t

∫
dE
√
E
〈δf 2

i 〉
2

= − ∂f0
∂x

∣∣∣∣
x0

{
〈ṽrδne〉 − 〈ṽrρ2s∇2φ̃〉

}
(33f)
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The physics of the replacement of Eq.(33d) with Eq.(33f) is a consequence of the fact that

the total dipole moment of the plasma is a constant, i.e.∫
dx
∑
α

qαnα(x)x = const (34a)

where nα(x) is the density of charge component α. Note that the dipole moment must

include the polarization component, which in turn guarantees a polarization flux, i.e.

−ρ2∇2φ = δni(φ)− δne(φ) (34b)

So

−〈ṽrρ2∇2φ〉 = 〈ṽrδni(φ)〉 − 〈ṽrδne(φ)〉 (34c)

Thus, ambipolarity breaking necessarily implies

−ρ2〈ṽr∇2φ̃〉 6= 0 (34d)

Then, using the now all-too-familiar Taylor Identity and flow momentum balance gives

∂t

{∫
dE
√
E

δf 2
i

2〈f〉′|x0
+ 〈Vθ〉

}
= −ν〈Vθ〉 − 〈ṽrδne〉 (35)

which states that even a localized phase space blob or hole cannot avoid zonal flow coupling,

on account of the fact that spatial scattering of the hole produces a flux of polarization

charge due to conservation of total dipole moment.

Eq.(35) can be viewed as a kind of Charney-Drazin theorem for zonal flows produced by

localized phase space structure growth. Clearly
∫
dE
√
Eδf 2

i /2〈f〉′ is the pseudomomentum,

and Eq.(35) states that for stationary δfi, the flow cannot grow unless −〈Ṽrδne〉 < 0 (i.e.

〈f〉′ < 0 is assumed), thus requiring electron transport. For, say, dissipative trapped electron

response[39] - relevant to trapped ion regime dynamics - we have 〈Ṽrδne〉 ∼= −DDT∂〈n〉/∂x,

so

∂t

{∫
dE
√
E

δf 2
i

2〈f〉′|x0
+ 〈Vθ〉

}
= −ν〈Vθ〉+DDT

∂〈n〉
∂x

(36)

whereDDT is the dissipative trapped electron diffusivity, ∼ 1/νe,eff . Note that since 〈fi〉′ < 0

and ∂〈n〉/∂x < 0, Eq.(36) suggests that the electron flux will tend to drive or enhance
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the ion structure. Physically, this corresponds to ion structure growth by scattering off the

(diffusing) electrons, so as to maintain ambipolarity. In the Bump-onTail or CDIA problems,

momentum conservation is the key constraint, while for drift wave turbulence, ambipolarity

maintenance is central. Note for stationary 〈δf 2
i 〉 and 〈Vθ〉 we have

〈Vθ〉 = −〈Ṽrδne〉
ν

=
DDT

ν

∂〈n〉
∂x

(37)

Very clearly:

1. a localized structure can excite a global (in θ) zonal flow

2. electron transport can drive the nonlinear growth of an ion structure. Note that here,

straightforward estimates give γ ∼ kvd∆ET/Eth.

At this point we should remark that it is instructive to compare Eq.(36) to the Charney-

Drazin Theorem for the Hasegawa-Wakatani system[13, 40], which is

∂

∂t
{WAD + 〈Vθ〉} = −ν〈Vθ〉 − 〈Ṽrñ〉 −

1

〈q〉′
{
µ〈(∇q̃)2〉+ ∂r〈Ṽrq̃2〉

}
(38)

Here, for H-W system q = n− ρ2s∇2φ and WAD = 〈δq2〉/〈q〉′. The correspondence is clear!

It is evidently the same equation, allowing for the fact that there is no turbulence spreading

or viscous dissipation in the Vlasov-Gyrokinetic structure problem. In particular, for H-W,

once again we find that a particle flux can drive the flow against drag. Finally, we note

in passing that significant impurity dynamics can have a profound effect on zonal flows by

altering the ambipolarity balance.

C. Drift-Hole Growth

In this section, we in essence combine the results of a.) and b.) to derive an expression

for drift hole growth. Here a drift hole is a phase space structure in a slab drift wave system.

For variety, we consider here an electron structure, which is a hole (phase space depression)

so as to self-bind. The process of self-binding can be thought of as the formation of a state
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which is marginally stable to Jeans modes. This is discussed further in references[17, 41].

The growth calculation extends that of ref.[41]. As before, we write

∂

∂t

∫
d3vδf 2 = −2

d

dt

∫
d3v〈f〉δf (39a)

Now

〈f〉 = f0 + (x− x0)
∂f0
∂x

∣∣∣∣
x0,v‖,0

+ (v‖ − v‖,0)
∂f0
∂v‖

∣∣∣∣
x0,v‖,0

(39b)

Since

dx

dt
=

c

B
Ẽθ,

dv‖
dt

= − |e|
me

Ẽ‖ (39c)

we immediately find:

∂

∂t

∫
d3v
〈δf 2〉

2
= −〈ṽrδne〉

∂f0
∂x

∣∣∣∣
x0,v‖,0

+
|e|
me

〈Ẽ‖δne〉
∂f0
∂v‖

∣∣∣∣
x0,v‖,0

(39d)

As before:

δne = δni − ρ2s∇2
⊥φ̃ (39e)

we thus obtain:

∂

∂t

∫
d3v
〈δf 2〉

2
=−

[
〈ṽrδni〉 − 〈ṽrρ2s∇2φ̃〉

] ∂f0
∂x

∣∣∣∣
x0,v‖,0

+
|e|
me

[
〈Ẽ‖δni〉 −

|e|
me

〈Ẽ‖ρ2s∇2
⊥φ̃〉
]
∂f0
∂v‖

∣∣∣∣
x0,v‖,0

(40)

Here we ignore coherent (i.e. wave) non-adiabatic electron effects and hereafter drop the

fourth term on RHS. Note that such correlations have been shown to potentially be signifi-

cant in the context of intrinsic rotation[42]. Taking δni = χi(k, ω)φ̃k,ω, where χi(k, ω) is the

ion guiding center susceptibility (n.b.: this tacitly ignores any ion trapping or granulations,

but should include zonal shears), we find

∂

∂t

∫
d3v

{
〈δf 2〉

2∂f0/∂x|x0,v‖,0
+ 〈Vθ〉

}
=− ν〈Vθ〉+

∑
k

kθImχi(k, k‖v‖,0)|φ̃k|2

+
∑
k

k‖v‖,0Imχi(k, k‖v‖,0)
f0

∂f0/∂x|x0,v‖,0
(41a)
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or, collecting terms:

∂

∂t

∫
d3v

{
〈δf 2〉

2∂f0/∂x|x0,v‖,0
+ 〈Vθ〉

}
=− ν〈Vθ〉

−
∑
k

−kθf ′0 − k‖v‖,0f0
f ′0

Imχi(k, k‖v‖,0)|φ̃k|2 (41b)

Here v‖,0 is the hole speed, we have assumed f0 is a Maxwellian, k refers to the modes excited

by the structure (i.e. harmonics of the hole box size), and the hole ballistic frequency is

k‖v‖,0. Note that Eq.(41b) states, absent zonal flows, that:

∂t〈δf 2
e 〉 ∼ −(ω∗e − k‖v‖,0)Imχi(k, k‖v‖,0) (41c)

so that ω∗e > k‖v‖,0 is required for free energy accessibility. This, of course, the same as

the familiar ω < ω∗ condition for instability in linear theory. That result requires that the

structure motion release more energy due to radial scattering than it costs in v‖ scattering.

However, unlike linear theory, the dissipation which triggers growth is due to ions, i.e.

Imχi(k, k‖v‖,0) < 0. This reflects the role of the ambipolarity constraint, discussed above,

and implies that the regime of structure instability (Imχi(k, k‖v‖,0) large) is, in some sense,

complementary to the regime of wave instability (Imχi(k, k‖v‖,0) small). This is similar to

what we encountered for the case of CDIA. Also, clearly hole speed is a key parameter. v‖,0

must be small enough so that ω∗ > k‖v‖,0, but not so small to drive Imχi(k, k‖v‖,0) → 0.

Finally, we note that via the gyrokinetic Poisson equation, even electron holes will necessarily

couple to, and drive, zonal flows.

As before, hole growth is nonlinear, i.e. explosive. A straightforward extimate which

ignores zonal flow effects gives γ ∼ k‖∆vT (ω∗ − k‖v‖,0)|Imχi(k, k‖v‖,0)|, where ∆vT ∼ φ1/2.

Holes growth will surely distort 〈f〉 eventually, thus vitiating some of the assumptions of

this analysis. Note that the associated zonal flow growth can be calculated using the hole

fluctuation driven Reynolds stress. Obviously, coupling to the zonal flow is a major player

in the saturation of hole growth. Ref.[41] missed zonal flow effects, as it did not consider

mesoscale fluctuation envelope variation. This omission is now rectified. Obviously, χi(k, ω)

must be calculated self-consistently, accounting for the zonal flow. Also, zonal flow shear

will limit hole self-coherence times.
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V. DUPREE-LENARD-BALESCU THEORY FOR MEAN EVOLUTION

In this section, we briefly sketch the essentials of the theory of 〈f〉 relaxation in a bath of

turbulence which includes granulations and so has Kubo number K ' 1, rather than < 1,

as nominally required for the applicability of quasi-linear theory. The main novel feature

of the Dupree-Lenard-Balescu (DLB) theory is the appearance of a dynamical friction or

drag effect, due to Cerenkov emission by phase space granulations or eddys. This effect is

physically plausible in that intuitively put, turbulence at Kubo number K >∼ 1 behaves more

like a soup of blobs or structures, rather than an ensemble of waves. In a soup of structures,

each blob or hole will scatter off the others, and so leave a wake as it moves. This process of

wake emission is easily described by dynamical friction effects. Just as structures find new

ways to tap available free energy, dynamical friction can introduce new routes to relaxation,

instability and transport. This discussion is intentionally very brief, as there have been other

pedagogical treatments of the DLB theory published recently[18]. The interested reader is

referred to these for the gory and gruesome details.

The essence of the DLB theory is to derive an equation for the 1-time, 2-point fluctuation

correlation in phase space, 〈δf(x1, v1, t)δf(x2, v2, t)〉. This equation has the generic form:

∂t〈δf 2〉+ T1,2[〈δf 2〉] = P1,2 (42)

Here T1,2 refers to the two point evolution operator, including streaming, scattering and

collisional dissipation. T1,2 virtually always is calculated using a statistical closure of some

form. The more interesting piece is the production term P1,2. Since df/dt = 0 implies

d/dt〈δf 2〉 = −∂t〈f〉2, P1,2 is obviously related to ∂t〈f〉 and thus to mean relaxation, trans-

port, etc. For the 1D Vlasov prototype,

∂t〈f〉 = −∂v〈Ẽδf〉 = −∂v[−D∂v〈f〉+ F 〈f〉] (43)

Here D is analogous to the familiar quasilinear diffusion term, and F is the drag or dynamical

friction term. F arises from the fact that

δf = f c + f̃ (44)
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i.e. the total fluctuation is the sum of a coherent (f c) and incoherent (f̃) piece. The former

is proportional to (i.e. coherent with) the electric field perturbation Ẽk,ω, the latter is not.

Consideration of the x−, v− → 0 behavior of T1,2 forces us to confront the existence of f̃ .

Thus:

−D∂v〈f〉 = 〈Ẽf c〉 (45a)

F∂v〈f〉 = 〈Ẽf̃〉 (45b)

The incoherent correlation 〈f̃(1)f̃(2)〉 can be obtained from the total correlation 〈δf(1)δf(2)〉.

f̃ is related to φ̃ by

ε(k, ω)φ̃k,ω =

∫
dvf̃k,ω (46)

Thus, granulations resemble dressed macro-particles. It is possible for stationary turbulence

to arise and persist in the absence of linearly unstable waves.

Collisionless coupling of two different species (i.e. electrons and ions) can occur via F

and its dependence on ε. This induces dynamical friction. Just as two species interaction

can lead to structure growth, dynamical friction can drive nonlinear instability, i.e. growth

of δf 2 due to relaxation. Such growth has been observed in computer simulations[43].

Recently, the theory of collisionless dynamical friction was extended to include zonal flow

effects[44]. The calculation of P1,2 has also been used to estimate the efficiency of intrinsic

rotation generation[45]. Several aspects of the results agree well with relevant experimental

findings[46].

VI. CONCLUSION

This is a fascinating and active topic, which will only grow in importance and visibility.

There are no meaningful final conclusions. Many interesting topics for future research might

be suggested here. However, the authors would rather do these themselves! The reader is

thus invited to think for himself or herself and beat us to the punch.
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