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Abstract. A connection is established between two classical problems: the non linear
saturation of a bump-on tail instability in collisionless regime, and the decay of a zonal flow
towards a finite amplitude residual. Reasons for this connection are given and commented.

1. Introduction
This paper establishes a connection between two well-known analytical results that are currently
used for code verification. The first one is the Rosenbluth-Hinton theory of zonal flow decay
[1], which predicts an evolution towards a finite asymptotic amplitude called residual flow.
This prediction is routinely used to test and benchmark gyrokinetic codes. The second result
addresses the saturated value of the bump-on tail instability in collisionless plasmas. It predicts
a bounce frequency of deeply trapped particles that is proportional to the linear growth rate,
or equivalently a saturated mode amplitude that goes like the square of the linear drive (see
[2] for an overview). This result is an extension of a seminal paper by O’Neil that addresses
Landau damping in a nonlinear regime [3] (see also the work by Mazitov [4]). It is used to test
codes that solve 2D (x,v) Vlasov/Poisson problems. In fact MHD modes driven by energetic
particles often exhibit a quadratic scaling of the mode amplitude with the linear growth rate
when the drive is weak, in line with this prediction (cf. [5, 6] and references therein). It turns
out that these two results, zonal flow residual and saturated level of bump on tail instability,
are connected. The reason for this relationship, which is not entirely fortuitous, is detailed and
commented in this paper.

The paper is organized as follows. Section 2 summarizes the O’Neil calculation of Landau
damping in non linear regime and its extension to the bump on tail instability. The Rosenbluth-
Hinton calculation of the time evolution of zonal flow is reviewed in section 3. Finally the
relationship between residual zonal flows and bump-on tail saturated instabilities is discussed in
section 4. A conclusion follows.

2. Landau damping in non linear regime - extension to the bump on tail instability
The seminal O’Neil paper [3] aimed at studying Landau damping in collisionless regime in
the non linear regime where particle trapping matters. The time evolution of the distribution
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function and electric field were calculated. O’Neil realized that the asymptotic state can be
captured by calculating the energy transfer from the wave to particles. This calculation was
a source of inspiration for many subsequent works (e.g. [7, 8]). The O’Neil work was soon
extended to the bump-on tail instability. The saturated state can be calculated by stating that
the kinetic energy of resonant particles is fully converted to wave energy. The key point is then to
calculate the distribution function. O’Neil prescription consists in using a phase mixing ansatz.
The later states that the relaxed distribution function is the average of the unperturbed one
along trajectories, due to phase mixing. Hence it is flat within the island, and joins smoothly
the unperturbed distribution function outside the separatrix. This prescription is consistent
with the detailed calculation of the mode evolution done by O’Neil in the same work. Berk’s
prescription rather corresponds to a discontinuous distribution function that is flat in the island,
and joins the unperturbed distribution right at the separatrix [5]. A third option is to choose
a flat distribution function within an annulus, whose width is the island width [2]. Of course
other choices are possible as to the contribution of particles near the island separatrix.

2.1. Summary of the O’Neil calculation
Let us start from an arbitrary integrable Hamiltonian system that can be described by a set of
angle/action variables (Θ,J) such that

dΘ

dt
=

∂Heq

∂J
= Ωeq(J)

dJ

dt
= −∂Heq

∂Θ
= 0

where Heq(J) is the unperturbed Hamiltonian. This system is perturbed by an oscillation, i.e.

H(Θ,J, t) = Heq(J)− h cos (n ·Θ− ωt) (1)

We look for an asymptotic steady state, i.e. the amplitude h of the perturbed Hamiltonian is a
constant (in the original O’Neil paper, the evolution of h(t) was computed). We also introduce
the resonance frequency Ω(J) = n ·Ωeq(J)− ω. This general formulation allows the treatment
of a wide variety of problems. For instance (Θ1,Θ2,Θ3) are the cyclotron, poloidal and toroidal
angles for passing particles in a tokamak, while it becomes the cyclotron, bounce and precessional
angles for trapped particles. The angle Θ1 is just Θ1 = kx in the O’Neil case of a 1D electrostatic
wave, where k is the wave number, and x the position.

The resonant surface is defined by the condition Ω(J) = 0 in the action space. Near the
resonant surface, the actions are of the form J = JR + nI, where JR spans the resonant surface,
while the action I measures the distance to the resonant surface. The resonant frequency reads
Ω = CI, where C is related to the Hessian matrix of the Hamiltonian calculated at the resonant
surface

C = nink
∂2H

∂Ji∂Jk

∣∣∣∣∣
Ω=0

(2)

We assume that C is positive without any loss of generality. The trajectory equations read

dξ

dt
= Ω

dΩ

dt
= −ω2

b sin ξ

where ξ = n · Θ − ωt is an angle, and ωb =
√
Ch is the bounce frequency of deeply trapped

particles. The variable Ω is quite convenient since it is a pulsation and therefore can be compared
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to other characteristic frequencies, such as the the bounce pulsation ωb (and a damping rate for
dissipative problems). The variable I presents also some advantages as it is an action conjugate
to ξ. It is reminded here that the Jacobian is equal to 1 when moving from one to another set
of conjugate variables. The new Hamiltonian H is defined as

H =
1

2
Ω2 − ω2

b cos ξ (3)

H is a motion invariant, so that the system is still integrable. Its contour lines exhibit the
shape of an island (Fig.1). Eqs.(3) show that (ξ,Ω) are conjugate variables with respect to the
Hamiltonian H. The set (ξ,Ω) can be completed by a set of conjugate variables (ΘR,JR), which
span the resonant surface. The phase space volume element reads

d3Θd3J = d2JRd
2ΘRdIdξ (4)

To simplify the notations, the explicit dependence on (ΘR,JR) will be omitted in the following.
In other words, the problem becomes 2D, and decoupled from the dynamics along the resonant
surface. In the original O’Neil calculation, which addresses a 1D electrostatic wave, the following
correspondences hold

h = eφ ; Ω = kv − ω ; ξ = kx− ωt ; C = k2

m ; ωb = k
(
eφ
m

)1/2
(5)

where v is the velocity, and φ the electric potential. We introduce an average (”bounce” average)
over time for any function f (H, ξ, εΩ) where εΩ is the sign of Ω, which can be written as

〈f〉 =
1

τ

∫ π

−π

dξ

2π

1

|Ω|
f (H, ξ, εΩ) (6)

for passing particles (ω2
b ≤ H ≤ ∞), while

〈f〉 =
1

2τ

∫ ξ0

−ξ0

dξ

2π

1

|Ω|
(f (H, ξ, 1) + f (H, ξ,−1)) (7)

for trapped particles (−ω2
b ≤ H ≤ ω2

b ). Here Ω is to be understood as a function of (H, ξ, εΩ)

Ω = εΩ
√

2
(
H+ ω2

b cos ξ
)1/2

(8)

The bounce angle ξ0 is the positive root of ω2
b cos ξ0 = H. The normalizing time τ is defined as

τ =

∫ ξ0

−ξ0

dξ

2π

1

|Ω|
(9)

with ξ0 = π for passing particles. Note that τ is a continuous function of H, and differs from the
bounce period Tb. More precisely τ = Tb

2π for passing particles and τ = Tb
4π for trapped particles.

2.2. Saturation level
A subtle point is that the kinetic energy should be calculated in the laboratory frame, while
the calculation of the distribution function is done in the wave frame. The Hamiltonian in the
laboratory frame Hlab is related to the one in the wave frame H via the relation H = Hlab−ωI,
or equivalently Hlab = H+Ω ω

C . The Hamiltonian H does not participate in the resonant transfer
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Figure 1. Island shape (ωb = 1). Figure 2. Schematic view of the distribution
function at the island O point

of energy due to parity reason. Indeed f = F − Feq, where Feq is the unperturbed distribution
function, is an odd function of Ω. Therefore the resonant transfer of kinetic energy is

∆E =
ω

C

∫ +∞

−∞
dI

∫ +π

−π

dξ

2π
fΩ (10)

Moreover Feq which can be expanded near the resonant surface Ω = 0, i.e. Feq = F0 + F ′0Ω.
The phase mixing prescription states that the relaxed distribution function is the average of the
initial one over trajectories, i.e.

f = F − Feq = F ′0 [〈Ω〉 − Ω] (11)

Note that 〈Ω〉 is zero for trapped particles, since Ω changes sign when the particle moves back
and forth due to trapping. A schematic view of the distribution function at the O point of the
island is shown in Fig.(2). A change of variables yields the following result

∆E = 2
ω

C2
F ′0

∫ +∞

−ω2
b

dHτ
{
〈Ω〉2 −

〈
Ω2
〉}

(12)

It appears that most of the energy given by particles to the mode comes from trapped particles,
and to a lesser extent from barely passing particles. When balancing the energy transfer with
the mode energy density Λωh

2, one gets a prediction for the field amplitude ∆E+ Λωh
2 = 0. In

the O’Neil original problem (Landau damping of a 1D electrostatic wave) , the energy density
is just Λωh

2 = ε0
2 E

2, where E is the electric field amplitude and ε0 is the vacuum permittivity,
so that Λω = ε0k

2/2e2. For other problems, the expression of Λω can be more intricate, but
it remains generically independent of the perturbed Hamiltonian h. The final result can be
formulated as

ωb = KBTγL (13)

where γL = π
4ω

F ′
0

Λω
is the linear growth rate. The constant KBT is given by the following relation

KBT =
32

π

∫ ∞
0

dκ

κ3

τ

ωb

{〈
Ω2
〉
− 〈Ω〉2

}
(14)

where

Ω =
2ωb
κ
εΩ

[
1− κ2 sin2

(
ξ

2

)]1/2

(15)
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and κ is the the trapping parameter defined as κ2 =
2ω2

b

H+ω2
b
. Trapping corresponds to 1 ≤ κ2 ≤ ∞

while passing particles are characterized by 0 ≤ κ2 ≤ 1.

3. Zonal flow residual
3.1. Formal expression
In 1998 Rosenbluth and Hinton calculated the time evolution of a zonal flow and predicted
the asymptotic value, called zonal flow residual [1]. The calculation consists in initializing the
electric potential with a perturbation of the form φ(x, t = 0) = φ0e

ikψ, where k is the radial
wavenumber, and ψ is minus the poloidal magnetic flux normalized to 2π, also equal to −AϕR,
where Aϕ is the toroidal component of the vector potential, and R the major radius. It is a
function of the radial coordinate, labeled r. The evolution of φ(x, t) is calculated by solving the
gyrokinetic Vlasov equation coupled to the electroneutrality equation. The ratio of the potential
residual to its initial value is

φ∞
φ0

=
1−

∫
d3pFeqJ

2
0

1−
∫
d3pFeqJ2

0J
2
b

(16)

where J0 and Jb are related to averages over the cyclotron and drift motions, Feq is the
unperturbed distribution function. These are scalars for Fourier modes.

3.2. Field shielding
The gyroaverage function is the usual one, and is approximated by the following form in the
large scale limit J2

0 ' 1− 1
2k

2
⊥ρ

2
c , where ρc is the kinetic ion Larmor radius. The guiding center

radial coordinate reads ψ = ψ0 + ψ̂, where ψ0 is the time average position and ψ̂ describes the
shift with respect to the reference magnetic surface ψ = ψ0. For a periodic potential, the transit
average operator is defined as

Jb =
〈
eikψ̂

〉
' 1− k2

〈
ψ̂2
〉

(17)

where the bracket is an average over the drift motion. At first order in k2ρ2
c , the shielding term

reads

1−
∫
d3pFeqJ

2
0J

2
b ' k2

〈
1

2
ρ2
c +

∫
d3pFeqψ̂

2
〉

= k2
(
ρ2
i + δ2

)
(18)

where ρi = mT
eB is the thermal ion Larmor radius, and

(
dψ

dr

)2

δ2 =

∫
d3pFeq

〈
ψ̂2
〉

(19)

is the radial size of the drift orbit squared. The expression for the radial displacement ψ̂ is
obtained by using the conservation of the canonical toroidal kinetic momentum Pϕ = m I

B v‖−eψ,
namely

ψ̂ =
m

e
I

(
v‖
B
−
〈
v‖
B

〉
b

)
(20)

where the index ’b’ indicates a bounce average for particles trapped in the magnetic field due
to the mirror force, while it labels a transit time average for passing particles. Here I = BTR
is the product of the toroidal field by the major radius, B is the modulus of the magnetic field,
v‖ is the particle velocity along the magnetic field, m and e are the ion mass and charge. This
gives an expression of the width δ(

dψ

dr

)2

δ2 =
1

2

(
mI

e

)2 ∫
d3pFeq

[〈(
v‖
B

)2
〉
b

−
〈
v‖
B

〉2

b

]
(21)
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This is the main result derived by Rosenbluth and Hinton in arbitrary geometry. We now restrict
the analysis to circular concentric magnetic surfaces with large aspect ratio, so that r is now
the minor radius of a magnetic surface, and θ is the poloidal angle. The hamiltonian reads

H =
1

2
mv2
‖ + µB0(1− ε cos θ) (22)

where ε = r
R0

is the inverse aspect ratio. This Hamiltonian is obviously identical to the one
addressed in the previous section, with the following correspondences

h = µB0ε ; Ω =
v‖
qR0

; ξ = θ ; C = 1
mq2R2

0
; ωb = 1

qR0

(
µB0ε
m

)1/2
(23)

and H = C(H − µB0). Hence the problem is related again to particle trapping. However the
reader should be warned that trapping here is due to a magnetic mirror force, not to the mode
itself. The amplitude of the latter is very small, so that the problem can be treated linearly with
respect to φ. Moreover, it can be easily verified that for a Maxwellian distribution function

Feqd
3p = (2ε)1/2 2√

π
dEE1/2e−E

2dκ

[(1− ε)κ2 + 2ε]3/2
ωbτ (24)

where E is the energy normalized to the temperature. In the limit of large aspect ratio ε → 0
and precluding that the largest contribution comes from the separatrix neighborhood κ ' 1, a
compact expression of the zonal flow residual Eq.(16) is found

φ∞
φ0

=
1

1 + CRH q2√
ε

(25)

where

CRH = 3
√

2

∫ ∞
0

dκ

κ3

τ

ωb

{〈
Ω2
〉
− 〈Ω〉2

}
(26)

4. Relationship between residual zonal flows and bump-on tail saturated
instabilities
4.1. Numerical values and metrology
The two constants CRH and KBT are related to the quantity I

I =

∫ ∞
0

dκ

κ3

τ

ωb

{〈
Ω2
〉
− 〈Ω〉2

}
(27)

through the relations KBT = 32
π I and CRH = 3

√
2I. A straightforward calculation shows that

I = 2

∫ 1

0

dκ

κ4

[
2

π
E
(
κ2
)
− π

2

1

K (κ2)

]
+ 2

∫ +∞

1

dκ

κ3

[(
1

κ2
− 1

)
2

π
K

(
1

κ2

)
+

2

π
E

(
1

κ2

)]
(28)

where K and E are complete elliptical functions of first and second kinds. A numerical
calculation yields I ' 0.38 [12], which implies CRH ' 1.61 and KBT ' 3.84. The value
CRH ' 1.6 has been recovered in a number of gyrokinetic codes, and is now considered as a
”must do” verification test in gyrokinetic computation. However less success was met for the
bump-on tail instability since numerical simulations rather find KBT ' 3.2 [9, 11]. An alternative
recipe consists in postulating that trapped particles only contribute to the mode saturation. It
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turns out that I is analytic in that specific case, namely I = 8
9π , and KBT = 256

9π2 ' 2.9 [5].
Another calculation based on O’Neil prescription yields KBT ' 3.5 [10]. Finally a radical option
is to choose a flat distribution function within an annulus, whose width is the island width. This

procedure is fully analytic and leads to KBT = 32
√

2
3π ' 4.8 [2]. All these results differ from the

numerical findings. A value that is too low is found when minimizing the role of passing particles,
while an overweight of passing particles leads to an estimate that is too large. So it appears that
only a fraction of particles near the separatrix participate to the energy exchange. In particular
it looks like barely passing particles do not contribute as expected. This is not surprising since
the bounce time is very large near the separatrix (and infinite right on it), so that a mixing
argument is questionable for particles in this region of the phase space. This is consistent
with the analysis of the contributions of particles to the Rosenbluth-Hinton constant CRH (and
therefore of KBT ). It appears that barely trapped particles provide the largest contribution
(see Fig. 3). This structure in the velocity space was verified numerically by gyrokinetic codes
[13]. Another important test is the dynamics of the mode evolution, which is also analytical for
both problems, and quite different. Time evolution has been verified numerically with success
in both cases. As a final note, we stress that a steady solution is not unique by far for bump-on
tail instabilities, in particular when dissipation is accounted for. Quite often the system evolves
to unsteady solutions, which can be periodic, or chaotic, thus leading to frequency chirping
[14, 15, 11, 6]. These important developments are beyond the scope of the present paper.

Figure 3. Contour lines of the integrand of I in the v‖,v⊥ space at θ = 0.

4.2. Pure coincidence or some common physics?
The previous sections show that a relationship connects the bump-on tail constant with the

Rosenbluth-Hinton constant, i.e. KBT = 16
√

2
3π CRH . This is rather unexpected as the two results

correspond to different physics. On the one hand, the bump-on tail saturation comes from a
flattening of the distribution function near the resonance surface, leading to a weakening of the
drive until saturation. On the other hand, the zonal flow residual comes from a shielding effect of
the initial perturbation due to the particle response to the field. So the fast conclusion is that this
relationship is fortuitous. There are nevertheless common features : particle trapping, absence
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of collisions, and more importantly momentum conservation. The relation Eq.(10) shows that
the energy transfer in the bump-on-tail instability per unit time can be related to an exchange of
momentum between the wave and particles. The power is the drag force F = dP

dt times the wave
phase velocity ω

k . Here P is the momentum exchange between the wave and resonant particles

P = k

∫ +∞

−∞
dI

∫ +π

−π

dξ

2π
If = m2

∫ λ

0

dx

λ

∫ +∞

−∞
dv

(
v − ω

k

)
f (29)

where λ = 2π
k is the wavelength. The zonal flow residual is also related to momentum

conservation, though in a different way. As mentioned above, the shielding effect comes from
the particle displacement due to drift motion. The poloidal variation of the magnetic field in a
tokamak can be seen as a static wave, that exchanges momentum with particles. The change of
parallel velocity induces a radial displacement, which results from the conservation of toroidal
canonical momentum. This establishes a link between the particle radial shift and the parallel
velocity Eq.(20). The displacement is directly proportional to the variance of velocity, hence the
I integral. In the case of the bump-on tail instability, the variance comes in due to the structure
of the distribution function. This is probably the reason why the analytic calculation works
better for the Rosenbluth-Hinton shielding effect than for the bump-on tail mode saturation:
the distribution function results from a complex dynamics, and the assumption of phase mixing
is easily broken, in particular near the separatrix.

5. Conclusion
In summary it is found that the saturation of a bump-on tail instability in collisionless regime,
and the zonal-flow residual are connected. More precisely, the two constants that appear in
these classical results, namely the ratio of the trapping frequency to the linear growth rate, and
the zonal flow residual normalized to its initial value, are connected via a simple formula. From
the numerical point of view, the prediction for the zonal flow residual works better than the one
for the bump-on tail instability. This indicates that for zonal flow decay, all particles play their
expected role, while for the bump-on tail problem, particles near the separatrix do not behave
as foreseen. This means that the distribution function is flat within the island, as predicted,
but exhibits a transition near the separatrix sharper than expected on the basis of phase mixing
argument. The relationship between the two problems seems at first sight fortuitous, since the
physics that is involved is different. However particle trapping and momentum conservation
appear as common denominators, thus explaining partially the link between these expressions.
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