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ABSTRACT

The diffusive impurity transport as a function of charge and mass numbers is investigated in ion driven or electron driven turbulence, in the
limit of zero impurity temperature gradient. It is found that the impurity transport decreases slightly with increasing mass number and
depends much more strongly on the charge number. Moreover, this transport depends on the nature of the instability that drives turbulence.
The impurity flux due to Trapped Electron Mode (TEM) turbulence increases with the charge number Z. In contrast, it is found to decrease
with Z when the Trapped Ion Mode (TIM) dominated. In order to explain these observations, the quasilinear flux is derived and is compared
with the results obtained from the nonlinear simulations. Quasilinear theory qualitatively reproduces the gyrokinetic numerical observations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5107443

I. INTRODUCTION AND MODEL

In tokamak plasmas, all particles that are not electrons or do not
contribute to the reaction of fusion are defined as impurities. For
instance, argon or neon can be introduced in the plasma edge as impu-
rity seeding used for tailoring the radiation profile near the plasma-
facing components. The propagation of these particles into the plasma
core can be problematic. Moreover, transport and accumulation of
tungsten from the wall to the core can also be prohibitive, for concen-
trations as low as 3� 10�5.1 In contrast, helium ash produced by the
reactions of fusion must be transported from the core to the wall.
Therefore, impurity accumulation in the plasma core must be avoided
and impurity transport is an issue that needs to be understood. For
example, the direction of this transport, i.e., inward or outward, can be
predicted by neoclassical theory, depending on both the main ion den-
sity gradient and the temperature gradient. In addition, turbulence
also contributes to impurity flux.

In this work, we focus on turbulence issues. The second and third
terms on the RHS of the following equation, which denote the thermo-
diffusive pinch and the curvature-driven pinch, respectively,

C ¼ �D @n
@r
þ CT

@T
@r
þ CP; (1)

are neglected in our calculations, so that impurity transport C calcula-
tions only include diffusive transport [the first term on the RHS of Eq.
(1), C ¼ �D @n

@r]. Moreover, our model is collisionless, meaning that
neoclassical transport is not taken into account. The expected

increasing importance of the turbulent transport of impurities in a
reactor plasma motivates our study. Turbulent impurity transport is
expected to have a larger weight in future reactor size plasmas than in
present devices,2 in which neoclassical transport is relatively higher.
Isotopic effects (hydrogenic mass effects) on impurity transport have
been studied,3 but these investigations are limited to Z¼ 2–3, whereas
we aim at covering a larger range. The dependence of impurity trans-
port on the impurity species has been studied as well,2,4–13 but without
decoupling the impacts of Z and A or focusing on the peaking factor.
In a previous paper,14 we have shown how a large concentration of
tungsten can change the nature of the turbulence in the case of active
species. In the present article, we perform scalings for the impurity dif-
fusion coefficients with the impurity charge and the mass numbers
and with the TEM or trapped ion mode (TIM) driven modes, in the
case where impurity concentrations do not affect the nature of the tur-
bulence. Impurity turbulent fluxes are investigated via both
gyrobounce-kinetic simulations and quasilinear theory. The gyroki-
netic code we use is named TERESA (Trapped Element REduction in
Semi Lagrangian Approach).15 It should be noted that the results of
nonlinear simulations are often compared with the results of the quasi-
linear theory, which is relevant because its estimations of turbulent
fluxes in most cases remain in good agreement with nonlinear gyroki-
netic simulations16 as well as with experimental results,17 despite crude
simplifications, and even if, in some cases, discrepancies between non-
linear simulations and quasilinear predictions are observed.2

To complete this introduction and for the benefit of the reader,
below, we summarize the main assumptions and equations of the
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gyrokinetic model14 needed to understand the new investigations and
results described in the rest of this article. The reader can find further
information in Refs. 14, 15, and 18–28.

The model is relevant for relatively low frequency modes, such as
Trapped-Ion Modes (TIMs) and Trapped-Electron Modes (TEMs).
TEM and TIM are instabilities that are characterized by frequencies x
on the order of xd, the precession frequency. The latter frequency is
smaller than xb, the bounce frequency, which itself is smaller than the
cyclotron frequency xc. Therefore, it is possible to gyroaverage and
bounce-average the Vlasov equation, thus filtering out the fast cyclo-
tron and bounce frequencies, and the small space scales qc (gyrora-
dius) and db (banana width). These assumptions lead to a reduction of
dimensionality, from 5D gyrokinetics to 4D gyrobounce-gyrokinetics.
We consider an adiabatic response of the passing particles, and thus,
our reduced model with trapped kinetic particles covers both TIM/
TEM regimes simultaneously but precludes other instabilities such as
Ion-Temperature-Gradient (ITG) or Electron-Temperature-Gradient
(ETG) instabilities.

The Vlasov equation reads

@fs
@t
� J 0;s/; fs½ �a;w þ

XdE
Zs

@fs
@a
¼ 0; (2)

where fs is the gyrobounce-averaged particle distribution function. The
subscript s¼ i, e, and z stands for the species considered (main ion,
electron, or impurity), and / is the plasma potential. E is the particle
kinetic energy. a¼u – qh, with u being the toroidal angle, h the
poloidal angle, and q the safety factor. w is the magnetic flux, the func-
tion of the radius w¼ 1 stands for the core plasma and w¼ 0 for
the plasma edge. Zs is the charge number. Xd ¼ Zsxd;s

E , with xd,s

being the toroidal precession frequency for the species s.29 For the
main ion species, we chooseXd¼ 1, and we neglect the variation of Xd

over the radius (Xd only depends on the sign of the charge).
The gyrobounce-averaging operator is written as

J 0;s ¼ 1� E
T0;s

d2b0;s
4
@2w

 !�1
1� E

T0;s

q2q2
c0;s

4a2
@2a

 !�1
; (3)

where qc0,s and db0,s are the Larmor radius and the banana width
(expressed in units of w) and T0,s is the equilibrium temperature at
w¼ 0, normalized to an arbitrary reference temperature T0.
x0 ¼ T0=ðeR2

0BhÞ corresponds to the ion precession frequency at the
reference temperature T0 (time is normalized to x0), and Lw¼ aR0Bh

is the radial length of the simulation box in units of w. w is normalized
to Lw.

The normalized quasineutrality constraint is written as

2ffiffiffi
p
p
X
s

Zscs

ð1
0
J 0;sfsE

1=2dE

� �

¼ Cad /� e/h/ia
� �

� Cpol

X
s

csssZ
2
s Ds/ ; (4)

with cs ¼ ns=n0;e being the concentration of the species s (ns is the
population density and n0,e the electron density at equilibrium),

Cpol¼ ex0Lw/T0, and Cad ¼ Cpol
1�fT
fT

P
sðZ2

scsssÞ, where fT is the frac-
tion of trapped particles and ss¼T0/T0,s. The Laplacian operator
expresses the difference between the particle density and the
gyrobounce-center density, corresponding to an effective polarization.

e/ is a control parameter which governs the response of the adiabatic
passing particles. Regarding this response, the reader can find further
information in Refs. 14, 25, and 30. Hereafter, only the case e/¼ 0.3 is
considered.

In Sec. II, linear results and nonlinear simulations are presented.
It is shown how impurities behave as a function of the mass and
charge numbers. In Sec. III, the quasilinear impurity fluxes are derived
and compared with nonlinear numerical results. Finally, a brief sum-
mary of the results along with a conclusion is given in Sec. IV.

II. IMPURITY TRANSPORT AS A FUNCTION OF THE
CHARGE NUMBER AND THE MASS NUMBER

We choose to implement the equilibrium distribution function as
follows:

Feq;s ¼
n0;s

T3=2
0;s

exp � E
T0;s

� �
1þ jn;s þ

E
T0;s
� 3
2

� �
jT;s

� �
w

� �
: (5)

For electrons and main ions, jT;ei ¼ 1
Te;i
@wTe;i have finite values. For

impurities, we choose jT,Z¼ 0 so that no thermodiffusion will appear
for impurity transport. jn,s is defined as 1

ns
@wns. The curvature driven

pinch is also neglected in this model since a Taylor expansion at w¼ 0
of a Maxwellian distribution yields

F�eq;s ¼ Feq;s �
n0;s

T3=2
0;s

eXdE
T0;s

w exp � E
T0;s

� �
: (6)

The latter term is responsible for the curvature-driven pinch and
is neglected in Eq. (5). Therefore, impurity transport calculations only
include diffusive transport. The transport across the magnetic field is
therefore adequately characterized as diffusivity.

For the linear study, we use the linear dispersion derived in
Ref. 14. It reads

D ¼ 0 ¼ Cn �
X
s

Zscsss

ð1
0
J2n;s

jn;s þ jT;s ns � 3
2

� �
Xd
Zs
ðns �WsÞ

e�nsn
1
2
sdn; (7)

with

Cn¼
ffiffiffi
p
p

2
CadþCpoln

2
X
s

csssZ
2
s q

2
c0;sþCpolk

2
X
s

csssZ
2
s d

2
b0;s

� �
:

(8)

Here, n ¼ E
T0;s
; Ws ¼ Zsx

nXdT0;s
, n is the mode number in the a-direction,

k¼p is the most unstable radial mode, and x is the complex mode
frequency. This dispersion relation will be solved to find the growth
rates and real frequencies of the TEM and TIM instabilities for two
different cases that we investigate in this paper. For linearly solving
Eq. (7), we scan the (xr, xi) plane, searching for values of x such that
the RHS of Eq. (7) vanishes within machine precision. For this pur-
pose, a method that finds the minimum of a scalar function of several
variables, starting in an initial state, and uses the simplex search
method31 is used. Actually, we start the scan from several initial values
in the (xr, xi) plane in order to get all the possible roots. Among these
solutions, one finds the couple (xr, xi) for which the instability growth
rate xi is maximum. We simultaneously look at the region where xr is
negative (TEM instability) and the region where xr is positive (TIM
instability). We retain the maximum of xi for each of the two regions.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 082306 (2019); doi: 10.1063/1.5107443 26, 082306-2

Published under license by AIP Publishing

https://scitation.org/journal/php


Here and in the remainder of this paper, we consider a plasma
composed of deuterium as the main ion species, electrons, and impu-
rity species. In our calculations and simulations, all species are consid-
ered as active species, meaning that each species is described by its
own distribution function and each species is taken into account in the
quasineutrality constraint.

We choose five different simulated impurities with the same
mass number (A¼ 20) but with 5 different charge numbers Z¼ 2, 4,
8, 10, and 12. Regarding the A-dependence, another set of simulations
is considered with the same charge number (Z¼ 4) but with 5 differ-
ent mass numbers A¼ 10, 30, 50, 70, and 90 in order to cover the
same

ffiffiffiffi
A
p

=Z range as in the case of the Z-dependence. Other parame-
ters used as inputs for the linear code and the nonlinear code are given
Tables I–III. Species concentrations and density gradients are chosen
according to quasineutrality, assuming that n0;e ¼ 1; jn;D ¼ 0:1;
cZ ¼ 10�5, and jn,Z¼�1 for all impurities. The minus sign for jn,Z
means that the impurity density is larger at the plasma edge than at
the plasma core, according to the fact that main impurities come from
the wall. It should be noted that the results presented hereafter do not
depend on the sign of jn,Z and the plus sign could have been chosen.
Other quantities from Table I are evaluated according to
quasineutrality X

s

Zscs ¼ 0; (9)

which also leads to a constraint on jn,s,X
s

Zscsjn;s ¼ 0: (10)

The two different cases investigated in this paper are now
presented.

The first one corresponds to @wTD¼ 0.135 and @wTe¼ 0.18. The
dispersion relation [Eq. (7)] is numerically solved, and TEMs are
found to be more unstable than TIM. This case is referred to as the

TEM case (Fig. 1). For these temperature gradients, the most unstable
mode is n¼ 74, the instability growth rate is c¼ 28.4 x0, and the real
frequency xr¼ –68.4 x0. In this case and with the ITER parameters, it
should be noted that the order of magnitude of xr/xb is about 0.2 for
deuterium and 0.005 for electrons. Thus, even if xr is much less than
xb in the case of electrons, for deuterium ions, the condition of the
mode frequency lower than the bounce frequency is less safely met.
Nevertheless, with different electron/ion mass ratios leading to
lower modes and smaller xr/xb, the results and the trends presented
hereafter are very similar.

For the second case, @wTD¼ 0.18 and @wTe¼ 0.135. The disper-
sion relation is numerically solved, and TIMs are found to be more
unstable than TEM. This case will be referred to as the TIM case
(Fig. 2). For these temperature gradients, the most unstable mode is
n¼ 60, the instability growth rate is c¼ 23.4 x0, and the real fre-
quency is xr¼ 56.9x0.

The results of the nonlinear simulations are now presented. A
semi-Lagrangian method for the numerical resolution of the Vlasov
equation is used.32 These simulations have been performed with
Nw¼ 256, Na¼ 1024, and NE¼ 192. The numerical simulations are
done using a thermal and density bath as boundary conditions: the
temperature and density are fixed at w¼ 0 and w¼ 1. Dirichlet
boundary conditions are imposed on the potential. The simulation
parameters correspond to a radial box size of 166 Deuterium Larmor
radii. First, we noticed (not shown in this paper) that for both cases,
the most unstable modes displayed by the nonlinear TERESA simula-
tions in the linear phase correspond to the linear growth rates given by
the linear analysis, as well as the direction of propagation, along the a-
direction for TIM instabilities and in the opposite direction for TEM
instabilities. Then, in the nonlinear state, the fastest growing modes
couple to the other eigenmodes, driving them up to the saturation
level.

In order to evaluate impurity transport, while smoothing out
fast turbulent fluctuations, we plot the cumulative flux along the
w-direction (meaning along the radial direction) given by

Ccumul ¼
ðt
0
Cðt�Þdt�; (11)

with21

CðtÞ ¼ � 2ffiffiffi
p
p
ð2p
0
da
ð1
0
f @aðJ/ÞE1=2dE: (12)

TABLE I. Main parameters used for the linear study and nonlinear simulations. The
subscripts D, e, and Z stand for deuterium, electron, and impurities, respectively.

cD ce cZ jn,D jn,e jn,Z
T0D;Z

T0;e

0.9964 1.0 10�5 0.1 0.099604 �1 1.0

TABLE II. Larmor radii used for the linear study and nonlinear simulations for deuterium (D), electrons (e), and impurities (Z). The values of the Larmor radii are at the thermal
velocity, and the approximation of constant orbit widths is used.

qc,D qc,e qc,Z¼2 qc,Z¼4 qc,Z¼8 qc,Z¼10 qc,Z¼12

6� 10–3 10�4 9.49� 10�3 4.74� 10�3 2.38� 10�3 1.90� 10�3 1.58� 10�3

TABLE III. Banana widths used for the linear study and nonlinear simulations, for deuterium (D), electrons (e), and impurities (Z). The values of the banana widths are at the
thermal velocity, and the approximation of constant orbit widths is used.

db,D db,e db,Z¼2 db,Z¼4 db,Z¼8 db,Z¼10 db,Z¼12

6� 10�2 10�3 9.49� 10�2 4.74� 10�2 2.37� 10�2 1.90� 10�2 1.58� 10�2
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A. Trapped electron mode case

We focus on the TEM case. The results regarding the Z-dependence
are presented in Fig. 3. First, a linear phase is observed, followed by the
saturation phase, at about t ¼ 0:6x�10 . The system reaches a nearly
steady state from t ¼ 0:8x�10 . Then, the cumulative flux increases
almost linearly, meaning that impurity particle flux is nearly constant.
The slopes are determined from t¼ 0.8 to t ¼ 1:1x�10 , and we can
then evaluate the impurity flux CZ. As we assume a pure diffusive
transport, the global diffusion coefficient is given by

DZ ¼ �
CZ

@wnZ
: (13)

The diffusion coefficients for the TEM case are presented in
Fig. 4. The diffusion coefficient DTEM is plotted against the impurity
charge number Z. The error bars correspond to the uncertainty in the
determination of the slopes from Fig. 3. We observe in that case that
the diffusion coefficient increases with the charge number. It should
be noted that this trend is always observed when TEMs are the main
instabilities and even if parameters are very different, for instance, if

FIG. 3. Impurity cumulative flux
Ð t
0 Cðt�Þdt� plotted against time in the case of a

TEM turbulence. Different charge numbers are considered, with the same mass
number A¼ 20. The higher charge impurity has larger impurity flux.

FIG. 4. Impurity diffusion DTEM coefficient plotted against the impurity charge num-
ber Z in the case of TEM turbulence. The mass number is A¼ 20. The coefficient
is calculated from Fig. 3, for 0.8< t< 1.1. The higher charge impurity has a larger
diffusion coefficient.

FIG. 1. Instability growth rates plotted against the mode number n, in the case
@wTe¼ 0.18 and @wTD¼ 0.135, for TEM (solid line) and TIM (dotted line). For
these temperature gradients, the most unstable mode n¼ 74 is a trapped electron
mode (TEM).

FIG. 2. Instability growth rates plotted against the mode number n, in the case
@wTe¼ 0.135 and @wTD¼ 0.18, for TEM (solid line) and TIM (dotted line). For
these temperature gradients, the most unstable mode n¼ 60 is a trapped ion
mode (TIM).
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we choose Larmor radii and banana widths such that the main unsta-
ble modes are much smaller (about n¼ 10 for instance). Moreover,
other simulations have been performed with e/ greater than 0.3. In
that case, zonal flows are stronger. The diffusion coefficient still
increases with the charge number, but the diffusion coefficients are
smaller, as expected when zonal flows are stronger (zonal flows are
structures perpendicular to the radial direction which improves
plasma confinement).

Nevertheless, we observe that impurity transport becomes
roughly independent of impurity charge at high impurity charges, as
observed in other studies.2

Finally, another important result is that this transport depends
weakly on the mass number A of the species. Additional simulations
have been carried out for five impurities with Z constant and different
values of A. We performed simulations with Z¼ 4 and A¼ 10, 30, 50,
70, 90 in order to cover approximatively the same domain in

ffiffiffiffi
A
p

=Z as
for the study of the Z-dependence (Fig. 5). The variation in A of the
impurity diffusion coefficient is about 60% smaller than that in Z, for
the same

ffiffiffiffi
A
p

=Z range, and is found to decrease with A.

B. Trapped ion mode case

Then, we consider the TIM case. The results regarding the
Z-dependence are presented in Fig. 6. First, a linear phase is observed,
followed by the saturation phase, at about t ¼ 0:75x�10 . The system
reaches a nearly steady state from t ¼ 1:0x�10 . Then, the cumulative
flux increases linearly, meaning that impurity particle flux is almost
constant. The slopes are determined from t¼ 1.0 to t ¼ 1:55x�10 , and
then, as in the TEM case, we evaluate the impurity flux CZ and the dif-
fusion coefficients.

The diffusion coefficients DTIM for the TIM case are presented in
Fig. 7. The diffusion coefficient DTIM is plotted against the impurity

charge number Z. The error bars correspond to the uncertainty in the
determination of the slopes in Fig. 6. We observe in that case that the
diffusion coefficient decreases with the charge number. It should be
noted that this trend is always observed when TIMs are the main
instabilities, even if plasma parameters are very different. The different
scaling of the diffusion coefficient with Z will be shown in Sec. III to be
related to a drift resonance.

Nevertheless, as in the TEM case, we observe that impurity trans-
port becomes roughly independent of impurity charge at high impu-
rity charge numbers.

FIG. 5. Impurity diffusion DTEM coefficient plotted against the mass number A in the
case of TEM turbulence. The charge number is Z¼ 4. The coefficient depends
more weakly on A than on Z (about 60%, the same scale as in Fig. 5 is used in
ordinates in order to compare both the results).

FIG. 6. Impurity cumulative flux
Ð t
0 Cðt�Þdt� plotted against time in the case of a

TIM turbulence. Different charge numbers are considered, with the same mass
number A¼ 20. The higher charge impurity has smaller impurity flux.

FIG. 7. Impurity diffusion coefficient DTIM plotted against the impurity charge num-
ber Z in the case of TIM turbulence. The mass number is A¼ 20. The coefficient is
calculated from Fig. 6, for 1.07< t< 1.55. The higher charge impurity has a
smaller diffusion coefficient.
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As in the TEM case, another important result is that this trans-
port depends weakly on the mass number A of the species.
Simulations have been performed for five impurities with Z constant
and different values of A. Again, we also performed simulations with
Z¼ 4 and A¼ 10, 30, 50, 70, 90 in order to cover approximatively the
same domain in

ffiffiffiffi
A
p

=Z (Fig. 8). The variation in A of the impurity dif-
fusion coefficient is about 80% smaller than that in Z, for the sameffiffiffiffi
A
p

=Z range, and is found to decrease with A.

C. Conclusion of the numerical simulations

From these results, we can conclude that in the case of turbu-
lence driven by trapped particles, the impurity diffusive transport
depends weakly on the mass number but depends mainly on the
charge number. Moreover, this transport depends on the nature of
the instability that drives turbulence: the diffusion coefficient is
found to increase with Z in the case of TEM turbulence, while the
diffusion coefficient is found to decrease with Z in the TIM domi-
nated case.

We noticed that the change in flux regimes arises from the phase
shifts between the density and potential fluctuations. These phase-
shifts increase with Z in the case of TEM turbulence, while they come
down with Z in the case of TIM turbulence.

In order to explain these observations, in Sec. III, a quasilinear
calculation of impurity transport is derived from the TERESA model
and comparisons with the numerical simulations are presented.

III. COMPARISON BETWEEN NUMERICAL
SIMULATIONS AND THEORETICAL PREDICTIONS

In this section, the out of phase part of the distribution function
to potential fluctuations is derived from the eigenmodes, and the qua-
silinear particle fluxes are determined, taking the power spectrum of
the plasma potential fluctuations and the gradient parameters from
TERESA simulation as input. Then, the comparisons between the

theoretically predicted impurity flux and the nonlinear impurity trans-
port simulations are presented.

The banana-center distribution function f of one species (here,
we consider an impurity species, and the subscript s is dropped) obeys
the Vlasov equation

@f
@t
� J/; f½ � þ XdE

Z
@f
@a
¼ 0; (14)

with

J/; f½ � ¼ @J/
@a

@f
@w
� @f
@a
@J/
@w

: (15)

We assume that

f ¼ f0ðE; tÞ þ f1 þ f2 þ � � � ; (16)

with f0(E, t) being the slowly evolving background distribution that

changes due to the effects of the unstable waves, with 1
f0
@f0
@t � ck, where

ck are the linear growth rates of the unstable waves. fn�1 are the small
magnitude high frequency perturbations, of order en, with e� 1.

Quasilinear theory assumes that the amplitudes are still small
enough that frequency and instantaneous growth rates of the modes
are all adequately described by the linear theory. The linear theory
yields

@f1
@t
� @J/1

@a
@f0
@w
þ XdE

Z
@f1
@a
¼ 0: (17)

Moreover, quantities with subscripts n� 1 are waves and there-
fore have spatial averages over a values which vanish (h:i ¼ 1

2p

Ð
a:da),

so that Eq. (14), combined with Eq. (17), averaged over a, and neglect-
ing terms with an order higher than 2, is written as

@f0
@t
¼ @

@w
f1
@J/1

@a

	 

: (18)

The RHS term can be explicitly calculated by expressing the
perturbations as a sum over spatial Fourier modes [/1ða; tÞ
¼
P

n /ne
inae�ixnt , and the same for f1] and by using Eq. (17) to get fn

as a function of /n, with fn and /n being the amplitudes of the mode n
of the perturbation. Assuming the developed distribution function (5)
with jT¼ 0 (no thermodiffusion for impurities), the relationship
between fn and/n then is written as

fn ¼
jn

Xd

Z
E � xn

n

Feqw¼0J/n; (19)

and Eq. (18) yields

@f0
@t
� @

@w

X
n

jnJ/nj2jnFeqw¼0

cn

ðnXd

Z
E�xr;nÞ2 þ c2n

0
@

1
A ¼ 0; (20)

where the sum is over linearly unstable modes only, with xn¼xr,n

þ icn, andxr,n and cn are the real frequency and the linear growth rate
of the mode n, respectively, determined by the linear dispersion rela-
tion [Eq. (7].

By integrating this last equation over energy E (the Jacobian is
proportional to E1=2dE), we obtain

FIG. 8. Impurity diffusion DTIM coefficient plotted against the mass number A in the
case of TIM turbulence. The charge number is Z¼ 4. The coefficient depends
more weakly on A than on Z (about 80%, the same scale as in Fig. 8 is used in
ordinates in order to compare both the results).
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@n0
@t
þ @Cw

@w
¼ 0; (21)

with Cw being the impurity transport in the radial direction

Cw ¼ �jn

ð
E

X
n

jnJ/nj2
cn�

xr;n � n
Xd

Z
E

�2

þ c2n

Feqw¼0E
1=2dE:

(22)

Both cn and xr,n have very weak dependency on both Z and A
since in this article, only trace impurities are considered, and therefore,
turbulence is governed by electrons and main ions: The more direct
impacts of impurity species in the Poisson equation are negligible for
Z2
s Cs � 1.33 Therefore, from this last equation (22), we can see that

the radial impurity flux depends on the charge number Z as expected
but depends weakly on the mass number. Indeed, the impurity mass
only impacts the gyrobounce-averaging operator, where the Larmor
radius and the banana width are proportional to

ffiffiffiffi
A
p

=Z [Eq. (3)]. But
this A-dependence of the gyrobounce-averaging operator is weak and
does not depend on the sign of xr and the nature of the instability.
Regarding the A-dependence, the impurity flux is expected to decrease
as A increases, in both TEM and TIM cases. These results are in agree-
ment with the numerical simulations.

This expression [Eq. (22)] can be further evaluated and we now
consider the two different cases. The real frequencies xr,n and the lin-
ear growth rates cn are needed and determined by solving the linear
dispersion relation [Eq. (7)]. The saturation level of the plasma poten-
tial is given by nonlinear simulations.

A. Trapped electron mode case

For TEM instabilities, xr;n

n < 0, and therefore, (xr;n

n �
Xd
Z E) is

always negative. We evaluate the integral Cw,TEM using Eq. (22), and
we compare the results DQLTEM ¼ �Cw;TEM=@wn with those given by
the nonlinear simulations (Fig. 4).

As we focus on the Z dependence, we adjust the choice of j/nj
¼ 0:05 to get the best reasonable agreement between the two curves,
but it should be noted that this choice is in qualitative agreement with
the amplitude of the modes given by the nonlinear TERESA simula-
tions. The results are presented in Fig. 9. The dotted line corresponds
to the nonlinear results already presented in Fig. 4, and the solid line is
DQLTEM . As expected, the quasilinear diffusion coefficient is found to
increase as a function of the impurity charge number. Here, the quasi-
linear flux is evaluated by summing over the n components of the
Fourier decomposition in a. But it should be noted that the quasilinear
calculations yield almost the same results for Cw whatever the method
we used: taking into account only the most unstable mode or consider-
ing the sum over all unstable modes.

We remark that in that case, there is very good agreement
between the quasilinear theory and the results of the numerical simu-
lations, despite the strong assumptions made in the quasilinear
calculations.

B. Trapped ion mode case

For TIM instabilities, xr;n

n > 0, and therefore, resonance is possi-
ble; by assuming cn small enough, the Lorentzian can be approximated
in the resonant portion by

cn�
xr;n � n

Xd

Z
E

�2

þ c2n

	 pd xr;n � n
Xd

Z
E

� �
: (23)

The integration over energy yields

Cw;TIM ¼ �jn
n0

T3=2
0

X
n

jnJ/nj2p
Z

nXd

� �3=2

x1=2
r;n e

� Zxr;n
nXdT0 : (24)

It should be noted that even though the delta-function expansion
condition cn/xr,n� 1 does not apply well in this case (cn/xr,n¼ 0.41

FIG. 9. Impurity diffusion coefficient DTEM plotted against the impurity charge num-
ber Z in the case of TEM turbulence. The dotted line corresponds to the nonlinear
results already presented in Fig. 4, and the solid line is DQLTEM . As in the numerical
simulations, the quasilinear diffusion coefficient is also found to increase as a func-
tion of the impurity charge number.

FIG. 10. Impurity diffusion coefficient DTIM plotted against the impurity charge num-
ber Z in the case of TIM turbulence. The dotted line corresponds to the nonlinear
results already presented in Fig. 7, and the solid line is DQLTIM . The quasilinear dif-
fusion coefficient is also found to decrease as a function of the impurity charge
number, and the nonlinear flux and the quasilinear prediction are in qualitative
agreement.
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for the most unstable mode), the monotonically decreasing depen-
dence on Z is still captured by Eq. (24).

But in order to limit the sources of discrepancies, we evaluate
numerically the quasilinear diffusion coefficients DQLTIM ¼ �Cw;TIM=
@wn using Eq. (22) for Cw,TIM and compare them with those given by
the nonlinear simulations (Fig. 7). In this case, to avoid small values of
cn/xr,n, only the most unstable mode n¼ 60 is retained in the calcula-
tion. The results are presented in Fig. 10. The dotted line corresponds
to the nonlinear results already presented in Fig. 7, and the solid line is
DQLTIM . The quasilinear diffusion coefficient monotonically decreases
as a function of the impurity charge number, and the nonlinear flux
and the quasilinear prediction are in qualitative agreement. The maxi-
mum discrepancy is equal to about 15%. This result is not totally sur-
prising considering the fact that nonlinear simulations and quasilinear
predictions are not always similar34 for the TERESA model.

For the study presented in this article, we can therefore conclude
that both trends of turbulent impurity transport with increasing Z
(increasing in the TEM case and decreasing in the TIM case) are con-
sistent with quasilinear theory.

IV. CONCLUSION

In the present article, the impact of the charge and mass numbers
on impurity turbulent fluxes has been investigated via both
gyrobounce-kinetic simulations and quasilinear theory. All the results
shown in this work are from simulations and calculations carried out
using the TERESA model. The trapped particles are treated kinetically,
while the passing particles respond adiabatically. The model is meant to
investigate fundamental mechanisms and trends, rather than provide
realistic quantitative predictions for tokamaks. The simulation parame-
ters correspond to a radial box size of 166 deuterium Larmor radii.

While impurity transport depends weakly on the impurity mass,
it is found that it is mainly dependent on the impurity charge number.
Moreover, it is found that impurity transport depends on the back-
ground turbulence: Impurity flux due to TEM turbulence increases
with Z, while it decreases with Z in the case of TIM turbulence. In con-
trast, for the A-dependence, we observe that the diffusion coefficient
decreases weakly with increasing A in both TEM and TIM cases.

The methodology of quasilinear theory has been shown to be
applicable in this case as it determines the relative strength of the
impurity ion transport and qualitatively explains the results obtained
from the nonlinear numerical simulations.
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Estève, X. Garbet, V. Grandgirard, G. Latu, C. Norscini, and C. Passeron,
J. Phys.: Conf. Ser. 561, 012003 (2014).

26A. Ghizzo, D. Del Sarto, X. Garbet, and Y. Sarazin, Phys. Plasmas 17, 092501
(2010).

27E. Gravier, M. Lesur, T. Reveille, and T. Drouot, Phys. Plasmas 23, 092507
(2016).

28E. Gravier, M. Lesur, T. Reveille, T. Drouot, and J. M�edina, Nucl. Fusion 57,
124001 (2017).

29B. Kadomtsev and O. P. Pogutse, Reviews of Plasma Physics (Consultants
Bureau, New-York, 1970), Vol. 5, p. 249.

30X. Garbet, Y. Idomura, L. Villard, and T. H. Watanabe, “Gyrokinetic simula-
tions of turbulent transport,” Nucl. Fusion 50, 043002 (2010).

31J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, SIAM J.
Optimization 9, 112 (1998).

32E. Sonnendrucker, J. Roche, P. Bertrand, and A. Ghizzo, J. Comp. Phys. 149,
201 (1999).

33M. Lesur, T. Cartier-Michaud, T. Drouot, P. H. Diamond, Y. Kosuga, T.
Reveille, E. Gravier, X. Garbet, S.-I. Itoh, and K. Itoh, Phys. Plasmas 24, 012511
(2017).

34J. M�edina, M. Lesur, E. Gravier, T. Reveille, M. Idouakass, T. Drouot, P.
Bertrand, T. Cartier-Michaud, X. Garbet, and P. H. Diamond, Phys. Plasmas
25, 122304 (2018).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 082306 (2019); doi: 10.1063/1.5107443 26, 082306-8

Published under license by AIP Publishing

https://doi.org/10.1088/0029-5515/50/2/025012
https://doi.org/10.1088/0029-5515/57/2/022009
https://doi.org/10.1063/1.4966561
https://doi.org/10.1088/0741-3335/53/10/105005
https://doi.org/10.1063/1.4875342
https://doi.org/10.1088/1741-4326/aaa4d3
https://doi.org/10.1063/1.3459062
https://doi.org/10.1088/0029-5515/51/2/023006
https://doi.org/10.1088/0741-3335/57/1/014031
https://doi.org/10.1088/0741-3335/57/1/014031
https://doi.org/10.1063/1.3083299
https://doi.org/10.1088/0029-5515/54/1/013009
https://doi.org/10.1063/1.3057356
https://doi.org/10.1088/1361-6587/aa52ea
https://doi.org/10.1088/1361-6587/aa52ea
https://doi.org/10.1063/1.5026381
https://doi.org/10.1140/epjd/e2014-50151-2
https://doi.org/10.1088/0741-3335/47/12B/S15
https://doi.org/10.1088/0741-3335/58/1/014036
https://doi.org/10.1088/0029-5515/17/1/010
https://doi.org/10.1063/1.866542
https://doi.org/10.1088/0741-3335/42/9/302
https://doi.org/10.1088/0741-3335/42/9/302
https://doi.org/10.1088/0741-3335/47/10/013
https://doi.org/10.1063/1.4927920
https://doi.org/10.1063/1.4933358
https://doi.org/10.1051/proc/201343017
https://doi.org/10.1088/1742-6596/561/1/012003
https://doi.org/10.1063/1.3474955
https://doi.org/10.1063/1.4962845
https://doi.org/10.1088/1741-4326/aa8c4c
https://doi.org/10.1088/0029-5515/50/4/043002
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1006/jcph.1998.6148
https://doi.org/10.1063/1.4974269
https://doi.org/10.1063/1.5057420
https://scitation.org/journal/php

	s1
	d1
	d2
	d3
	d4
	s2
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	t1
	t2
	t3
	s2A
	d13
	f3
	f4
	f1
	f2
	s2B
	f5
	f6
	f7
	s2C
	s3
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	d21
	f8
	d22
	s3A
	s3B
	d23
	d24
	f9
	f10
	s4
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34

