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1. Introduction

Understanding particle and heat transport in magnetized 
plasmas is an important issue for designing nuclear fusion 
reactors with sufficient predictability. Since the transport is 
caused dominantly by fluctuations, understanding the proper-
ties of these fluctuations, especially the excitation conditions 

and the satur ation level, is essential for assessing the perfor-
mance of plasmas.

Linear analysis of the excitation condition of instabilities 
provides a guide for the production of laboratory plasmas. 
However, the prediction of the onset of instabilities is an open 
question, as reviewed in [1]. In particular, there is room to 
improve the understanding of the sudden increase in the growth 
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Abstract
The abrupt and strong excitation of the geodesic acoustic mode (GAM) has been found in the 
large helical device (LHD), when the frequency of a chirping energetic particle-driven GAM 
(EGAM) approaches twice that of the GAM frequency. The temporal evolution of the phase 
relation between the abrupt GAM and the chirping EGAM is common in all events. The result 
indicates a coupling between the GAM and the EGAM. In addition, the nonlinear evolution 
of the growth rate of the GAM is observed, and there is a threshold in the amplitude of the 
GAM for the appearance of nonlinear behavior. A threshold in the amplitude of the EGAM for 
the abrupt excitation of the GAM is also observed. According to one theory (Lesur et al 2016 
Phys. Rev. Lett. 116 015003, Itoh et al 2016 Plasma Phys. Rep. 42 418) the observed abrupt 
phenomenon can be interpreted as the excitation of the subcritical instability of the GAM. The 
excitation of a subcritical instability requires a trigger and a seed with sufficient amplitude. The 
observed threshold in the amplitude of the GAM seems to correspond with the threshold in the 
seed, and the threshold in the amplitude of the EGAM seems to correspond with the threshold 
in the magnitude of the trigger. Thus, the observed threshold supports the interpretation that the 
abrupt phenomenon is the excitation of a subcritical instability of the GAM.

Keywords: GAM, EGAM, subcritical instability, abrupt excitation, energetic particle
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rate of instabilities, which is featured in abrupt phenomena 
such as sawtooth oscillation, or disruption in current-carrying 
toroidal plasmas and solar flares. The rate of change of the 
linear growth rate is limited by the rate of change of the global 
equilibrium parameters, which is too slow to explain the abrupt 
onset. This difficulty is known as the trigger problem, and 
has been a challenge in laboratory plasmas and astro-plasmas 
for more than a couple of decades [1, 2]. One of the working 
hypotheses for understanding the trigger problem is that of sub-
critical instability, which is driven nonlinearly in the linearly 
stable parameter region, if the initial seed is large enough. In 
magn etically confined plasmas, theoretical works have pre-
dicted several subcritical instabilities: current-diffusive inter-
change turbulence [3], magnetic island formation due to the 
neoclassical tearing mode [4], and instabilities caused by kinetic 
nonlinearity, including those of the fast ion-driven instabilities  
[5–12]. So far, however, there has been no clear experimental 
result demonstrating the subcritical instabilities in plasmas.

Recently, the abrupt excitation of the geodesic acoustic 
mode (GAM) [13] has been found in magnetically confined 
toroidal plasmas in the large helical device (LHD) [14]. This 
occurs in the presence of an energetic particle-driven GAM 
(EGAM) [15] with nonlinear temporal evolution of the fre-
quency. EGAMs have been widely observed in toroidal 

plasmas such as JET [16, 17], DIII-D [18], LHD [19, 20], 
JT-60U [21], ASDEX-Upgrade [22] and HL-2A [23]. The fre-
quency of the EGAM often chirps up quickly, and the timescale 
(~several ms) is much faster than the timescale of change in 
the global equilibrium parameters. The evolution corresponds 
with the evolution of structures in the velocity space of the 
energetic particle described by the Berk–Briezman model [24]. 
However, the timescale of the abrupt phenomenon observed in 
this study is much faster than that of the EGAM, and the ampl-
itude is larger than the variation in the amplitude of the EGAM. 
These observations suggest the importance of a different exci-
tation mechanism from the ordinary EGAM. In previous work 
[14], it has been shown that the observed behavior of an abrupt 
GAM is consistent with the features of its subcritical insta-
bility, as predicted by a theoretical model proposed in [25–27]. 
The onset of subcritical instability requires a seed perturbation 
with sufficient amplitude, and the observed threshold in the 
amplitude of the abrupt GAM seems to correspond with the 
magnitude of the seed. As for the seed trigger, however, only 
the reproducibility of the Lissajous diagram between the GAM 
and the EGAM has suggested a trigger by the latter. This study 
aims at a deeper understanding of the excitation mechanism of 
the abrupt phenomenon. In particular, the role of the EGAM 
is described by presenting the amplitude relation between the 
GAM and the EGAM as well as the phase relation.

The paper is organized as follows. In section 2, the apparatus 
is described. The experimental results are presented in sec-
tion 3. The measured temporal evolution of the abrupt excitation 
phenom enon and the analysis of the phase and amplitude rela-
tions between the abrupt GAM and the EGAM will be presented. 
The results reveal the role of the EGAM for the abrupt excitation 
of the GAM, and these results are summarized in section 4.

2. Apparatus

The LHD is a superconducting heliotron device with a major 
radius of 3.9 m and an average minor radius of 0.65 m [28]. In 
this experiment, the produced plasmas have a major radius of 
3.75 m and an average minor radius (a99) of approximately 0.6 
m, where the average minor radius is defined as the radius of a 
magnetic surface in which 99% of the stored energy is included. 
The top view of the plasma is shown in figure 1(a). The experi-
ment was performed under a magnetic field strength of 1.375 
T. The fuel gas is hydrogen, and the plasma was produced and 
sustained by a neutral hydrogen beam injection (NBI) in the 
counter direction with an energy of 175 keV, where ‘counter 
direction’ means that the plasma current driven by the injected 
beam decreases the original rotational transform of the magn-
etic field line. The power of the neutral beam ionized in the 
plasma is about 140 kW. For strong excitation of the energetic 
particle-driven instability, a positive gradient in the high energy 
(supra-thermal) range of the velocity space of ions is required. 
Thus, in order to increase the slowing-down time of the injected 
beam, the electron temperature is increased by superposing 
electron cyclotron heating (ECH) with a power of 2.5 MW.

For measuring the toroidal mode structure of the magn-
etic field fluctuations (�Bp), six Mirnov coils are installed on 
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Figure 1. (a) A top view of the LHD plasma and the layout of the 
heating and diagnostic equipment. (b) The measurement location 
of the HIBP during a sweep of the probe beam. The nested dotted 
contours are the poloidal cross sections of the magnetic surfaces 
calculated by the VMEC code (Hirshman et al [40]).
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the vacuum vessel of the LHD at distant toroidal locations, 
as shown in figure  1(a). The radial profiles of the electric 
potential fluctuation (�φ ) and the density fluctuation (�n) are 
measured by a heavy ion beam probe (HIBP), and the meas-
urement location moves along a curve shown in figure 1(b) by 
changing the injection angle of the probe beam at a frequency 
of 10 Hz [29, 30]. Thus, the electric potential can be measured 
at the normalized minor radius from  −0.3 to 0.6, where minus 
(plus) refers to the lower (upper) equatorial plane of the torus. 
In order to measure the energy spectrum of the confined ions, 
a neutral particle analyzer (NPA) is installed [31].

3. Experimental results

3.1. Experimental condition and typical temporal evolution

The typical waveforms of a discharge are shown in figure 2. 
The line-averaged electron density is approximately 0.1 × 1019 
(m−3) (figure 2(a)), the central electron temperature is approx-
imately ±8 3 keV, and the slowing-down time of the injected 
beam ion (H+) is approximately 20 s. As a result, the energy 

spectrum of the confined ions has a steep positive gradient 
below the energy of the NBI [32, 33]. The temperature of the 
bulk ion is approximately 0.4 keV [32]. The plasma cur rent 
induced by the counter NBI is lower than 3 kA, which is not 
sufficient to change the monotonic magnetic shear.

The poloidal magnetic field fluctuations (�Bp) measured by 
a Mirnov coil, and its spectrogram, are shown in figures 2(c) 
and (d ), respectively. Figures 2(e) and ( f ) show the measure-
ment location of the HIBP and a spectrogram of the electric 
potential fluctuations measured by it. Coherent modes with 
frequency up-chirping, which corresponds with the evolution 
in the velocity space distribution function [24], from about 
50 kHz to 90 kHz appear intermittently, as shown by white 
arrows in both �Bp (figure 2(d)) and �φ  (figure 2( f )). These have 
been identified as EGAMs [33], and this mode is referred to 
as ‘EGAM’ in the latter part of this paper. The EGAMs are 
only observed in low-density plasmas (< × −0.3 10 m19 3( )) in 
which the energetic particles do not slow down sufficiently, 
as shown in [33].

When the frequency of the EGAM approaches 80 kHz, 
another mode with half the frequency of the EGAM is 
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Figure 2. (a) The line-averaged electron density, (b) the plasma current, (c) the magnetic field fluctuations measured by a Mirnov coil, and 
(d) its spectrogram. (e) The measurement location of the HIBP, where reff is the average minor radius, and a99 is the average minor radius of 
a magnetic flux surface which includes 99% of the stored energy. ( f ) A spectrogram of the electric field fluctuation measured by the HIBP; 
the white and black arrows indicate the EGAM and the abruptly excited GAM, respectively.
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abruptly and transiently excited, as marked by black arrows 
in figures 2(d ) and ( f ). An expanded view of �Bp is shown in 
figure 3. The duration time of the abruptly excited mode with 
the frequency of 41.5 kHz is less than a millisecond, and this 
is much shorter than the duration of the EGAM (~10 ms). The 
GAM frequency [34] calculated with the parameters of the 
bulk plasma, when assumed to be pure hydrogen plasma, is 
±56 10 kHz. Although the frequency of 41.5 kHz is smaller 

than the calculated GAM frequency, the difference can be 
explained by the effect of energetic particles [15, 33, 35] and 
of impurity ions. The abruptly excited mode at 41.5 kHz has 
been identified as a GAM because the frequency and the spa-
tial structures of the electric potential fluctuation and the den-
sity fluctuation associated with the mode agree with those of 

the GAM, as shown in [14]. In this paper, this abruptly excited 
mode is just referred to as ‘GAM’ in order to avoid confusing 
the two observed modes, which are the ‘EGAM’ with the 
up-chirping frequency and the abruptly excited ‘GAM’ at 
approximately 40 kHz.

In addition, several modes also appear at around 97 kHz, 
139 kHz and 180 kHz. As shown in figure  4, these frequen-
cies correspond with the addition of 14 kHz to the higher 
harmonic frequencies of the abruptly excited GAM with a 
frequency of 41.5 kHz: + =f2 14 97d , + =f3 14 138.5d  and 
+ =f4 14 180d , where fd (=41.5 kHz) is the frequency of the 

abruptly excited GAM. The toroidal mode numbers of the 
GAM and EGAM are zero, and those of the other modes at 
14 kHz, 97 kHz, 139 kHz,  and 180 kHz are one, as shown 
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Figure 3. (a) A spectrogram of the magnetic field fluctuations (�Bp). (b) and (c) Show the waveforms extracted by using numerical band-
pass filters with a pass band of 58–92 kHz and 25–55 kHz, respectively; (b) corresponds with the EGAM and (c) corresponds with the 
abruptly excited mode. Bold curves show the envelopes.
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in figure 5. This relation between the frequencies suggests a 
coupling between the higher harmonics of the abrupt GAM 
and a mode with a frequency of 14 kHz. Because the ampl-
itudes of the high-frequency modes (>90 kHz) are more than 
one order of magnitude less than those of the EGAM and the 
abruptly excited GAM at 41.5 kHz, their contribution to the 
abrupt excitation phenomenon can be neglected.

The amplitude of �Bp associated with the abrupt GAM is typi-
cally 5 µT, and this is approximately two times larger than the 
maximum amplitudes of the EGAM, which is 2 µT. If the abrupt 
excitation is caused by a simple parametric coupling, the power 
and the frequency must satisfy the Manley–Rowe relation [36]: 

=P f P f1 1 2 2/ / , where P and f  are the power and the frequency, 
and the subscript indicate the coupling modes. The observed 
abrupt GAM and EGAM do not satisfy this relation. Thus, the 
abrupt excitation is not caused by a simple parametric coupling.

3.2. Nonlinear evolution of the abruptly excited GAM

A nonlinear evolution of the GAM has been observed. 
Figure 6 shows the temporal evolution of the amplitude of the 
GAM and its time derivative. The instantaneous growth rate 

(γexp) can be estimated as � �γ = B t Bd dexp p p( )/ / , where �Bp  is 

the amplitude of the mode.
Figures 6(a) and (b) correspond to a case where the GAM 

reaches moderate amplitude. After the GAM is triggered, 

the growth rate decreases monotonically as the amplitude 
increases. This behavior is common, because the driving source 
is consumed by the mode excitation. In contrast, in the case in 
which the GAM is strongly excited, as shown in figures 6(c) 
and (d), although the growth rate decreases monotonically for 
small amplitudes, it increases with an increasing amplitude 
when the amplitude exceeds a threshold of approximately 2 
µT. Figure 7 summarizes the relation between the growth rate 
and the amplitude in several events under similar experimental 
conditions, and it indicates the reproducibility of the threshold 
at approximately 2 µT in this experimental condition. This 

10
-22

10
-20

10
-18

10
-16

10
-14

P
S

D
 (

a.
u.

) 

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
S

D
 (a.u.) 

14kHz 14kHz 14kHz 14kHz

3 fdfd 2 fd 4 fd14 kHz

1.0

0.8

0.6

0.4

0.2

0.0

C
oh

er
en

ce

200150100500
Frequency (kHz)

(a)

(b)

Figure 4. (a) The frequency spectra of the magnetic field fluctuation (left-hand side) and the electric potential fluctuation (right-hand side). 
(b) The coherence between the magnetic field fluctuations measured by two Mirnov coils aligned in the toroidal direction.

-180

-90

0

90

180

P
h

a
se

 (
d

e
g

re
e

)

360270180900
Toroidal angle of the Mirnov coil position (degree)

14 kHz  97 kHz
139 kHz 180 kHz

 EGAM
 42 kHz

Figure 5. The phase of the magnetic field fluctuations. The 
horizontal axis is the toroidal angle of the position of the Mirnov 
coils.

Nucl. Fusion 57 (2017) 072009



T. Ido et al

6

reacceleration of the growth rate cannot be explained by linear 
instabilities, as long as the direction of change in the driving 
source, such as the gradient in the phase space and the pressure 
gradient, does not vary for a short period. In the timescale of 
the GAM, the heating power of NBI and ECH is constant and 
the electron density is almost constant as shown in figure 2. 
Thus, the reacceleration of the growth rate is an essential non-
linear feature of the mode excitation.

3.3. Phase relation between the abruptly excited GAM  
and the EGAM

The abruptly excited GAM only appears in the presence of 
the chirping EGAM. Thus, the GAM is normally stable, and 
the presence of the EGAM seems to be a necessary condition 
for the abrupt excitation of the GAM. In order to confirm and 
characterize the link between the GAM and the EGAM, the 
phase relation between them has been investigated.

Figure 8 shows the phase difference (δ) between the 
abruptly excited GAM and the EGAM during the GAM 
excitation, where the phase difference δ is defined as 
� π δ∝ +B f tcos 2 dGAM ( ) for the abruptly excited GAM with a 
frequency of fd and � π∝B f tcos 2EGAM 2  for the EGAM with 
a frequency of f2. In order to show the reproducibility, the 
phase differences in three events are plotted in figure 8, and 
the spectrograms including the analyzed events are shown in 
figures  9(a)–(c). The phase relation shows a common ten-
dency in all the events. If the GAM was independent from 
the EGAM, the phase would be random in each event. As 
the abrupt GAM evolves, the frequency of the EGAM rap-
idly changes following the second harmonic frequency of the 

GAM, as shown in figures 8(a)–(c). The specific phase rela-
tion and the change in the EGAM frequency during the GAM 
excitation suggests the mode coupling between the GAM 
and the EGAM, though a simple parametric coupling cannot 
explain the abrupt excitation as described in section 3.1. In 
addition, this coupling cannot be explained by the known 
driving mechanisms of the GAM, such as the nonlinear cou-
pling of turbulence [37] and the inverse Landau damping by 
energetic particles [15].
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3.4. Relation between the amplitude of the EGAM  
and excitation of the GAM

In the previous section, it is revealed that the EGAM is related to 
the abrupt excitation of the GAM. If the EGAM plays an essen-
tial role, the GAM excitation will correlate with the amplitude of 
the EGAM. Figure 9 shows the relation between the amplitude 
of the GAM and the amplitude of the EGAM, where the latter 
amplitude is measured just before the abrupt GAM excitation. 
This indicates that the GAM is not excited if the amplitude of the 
EGAM is smaller than 1.2 µT. Thus, there is a threshold in the 
amplitude of the EGAM for the abrupt excitation of the GAM.

Note that even if the amplitude of the EGAM exceeds the 
threshold, the GAM is not excited in some cases. This suggests 

the existence of other parameters determining the abrupt GAM 
excitation, which will be discussed in the next section.

4. Discussion

The experimental results indicate that the abrupt excita-
tion of the GAM involves a coupling with the EGAM with 
an up-chirping frequency. However, the coupling cannot be 
explained by a simple parametric coupling and the known 
driving mechanisms of the GAM, such as the nonlinear 
coupling of turbulence and the inverse Landau damping, as 
described above.

According to the theoretical model proposed in [25–27], 
the subcritical instability of the GAM can be driven by a 
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cooperative collaboration of the kinetic nonlinearity, which 
corresponds with the resonant interactions between the GAM 
and the energetic particles, and fluid nonlinearity, which cor-
responds with the nonlinear parametric coupling between the 
EGAM (mother mode) and the GAM (daughter mode). Thus, 
the abrupt excitation phenomenon can be interpreted as the 
subcritical instability of the GAM (daughter mode) triggered 
by the chirping EGAM (mother mode), and the energy of the 
instability comes from the EGAM (mother mode) and the 
energetic particle. The timescale of the GAM excitation, the 
phase relation and the amplitude relation between the GAM 
and the EGAM are reproduced by the model as shown in [25]. 
Recently, another simulation by the MEGA code [35, 38] 
which is a hybrid simulation code taking into account kinetic 
energetic particles and an MHD fluid, shows that the coupling 
between the GAM and the EGAM arises only from a kinetic 
coupling via energetic particles [39]. Although, at present, the 
amplitude of the excited GAM is much smaller than that of the 
EGAM in the simulation, unlike the experimental results [39] 
indicates that the kinetic coupling induced by the resonant 
interaction between the EGAM with the second harmonic 
GAM frequency and energetic particles causes the GAM 
oscillation with the fundamental GAM frequency. The cou-
pling may become a trigger of the subcritical instability with a 
large amplitude if a sufficient seed to exceed the threshold for 
a subcritical instability is given. Thus, neither of the candidate 
theories contradict the interpretation, in which the observed 
relation between the GAM and the EGAM indicates that the 
EGAM triggers the abrupt GAM excitation; however, the cou-
pling mechanism triggering the instability has not been identi-
fied yet.

The excitation of the subcritical instability requires a 
seed with sufficient amplitude and a trigger. The threshold in 
the amplitude of the GAM (figure 7) can be interpreted as 
the required amplitude of the seed, and the threshold in the 
amplitude of the EGAM (figure 9) can be interpreted as corre-
sponding with the threshold in the trigger. Thus, the exper-
imental results indicate that the abrupt excitation phenomenon 
has the nature of a subcritical instability.

The scattering data in figure 9 can be explained by the theor-
etical model in [26]. According to the theoretical model, the 
threshold has been analytically predicted as θD td d2  ⩾   / , where 
D is proportional to the amplitude of the EGAM, and θ td d/  is the 
chirping rate frequency of the EGAM if the linear growth rate 
of the GAM is small. Thus, the theory predicts that the excita-
tion condition is determined not only by the magnitude of the 
EGAM, but also by the frequency chirping rate. In other words, 
the threshold in the amplitude of the EGAM for the abrupt GAM 
excitation depends on the frequency chirping rate of the EGAM. 
Figure 10 provides a summary of the parameters (amplitudes 
and chirping rate) where the abrupt GAM is excited. Here, the 
analyzed data is the same as that in figure  9. The excitation 
boundary seems to agree with the theoretical prediction of the 
excitation threshold, which is θ ∝D t f td d d d2 ⩾ / / , qualitatively.

The threshold in the trigger (figure 9) and the threshold 
in the amplitude (figure 7) are the essential features of a sub-
critical instability, and the theoretical prediction of the param-
eter dependence of the threshold agrees with the experimental 
result (figure 10). Therefore, the observed abrupt phenomenon 
can be interpreted as the excitation of the subcritical insta-
bility of the GAM.

5. Summary

Abrupt excitation of a GAM has been found in the LHD, when 
the frequency of the chirping EGAM approaches twice that of the 
GAM frequency. The phase relation between the GAM and the 
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EGAM is common in all excitation events, and it indicates mode 
coupling between the GAM and the EGAM. However, the rela-
tion between the amplitude variations of the abrupt GAM with 
the lower frequency and the EGAM with the higher frequency 
does not satisfy the Manley–Rowe relation. Thus, although mode 
coupling is involved, it does not explain the abrupt excitation.

The observed characteristics of the abrupt excitation of the 
GAM, such as the phase, the amplitude and timescale of the 
evolution, can be explained by a theoretical model [25–27], 
which shows that the subcritical instability of the GAM can 
be driven by a cooperative collaboration between kinetic 
nonlinearity and fluid nonlinearity. The observed threshold 
in amplitude of the GAM for the reacceleration of the growth 
rate seems to correspond with the threshold in the magnitude 
of the seed required for the growth of the subcritical insta-
bility, and the threshold in the amplitude of the EGAM for 
the GAM excitation seems to correspond with the threshold 
in the magnitude of the trigger. Thus, the observed thresholds 
indicate that the abrupt excitation phenomenon of the GAM 
with a large amplitude has a subcritical instability nature, 
and this experiment would be the first demonstration of the 
presence of subcritical instability in magnetically confined 
plasmas. Since a subcritical instability is one of the working 
hypotheses [1] of the onset of abrupt phenomena such as 
sawtooth oscillation and disruption in laboratory plasmas, as 
well as solar flares in astro-plasmas, this study identifies an 
experimental path for exploring the trigger problem of abrupt 
phenomena.
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