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Abstract:
In the presence of wave dissipation, phase-space structures emerge in nonlinear Vlasov dy-
namics. A new theory gives a simple relation between the growth of these coherent structures
and wave energy. The structures can drive the wave by direct momentum exchange, which
explains the existence of nonlinear instabilities in both barely unstable and linearly stable
(subcritical) regimes. When dissipation is modeled by a linear term in the field equation,
simple expressions of a single hole growth rate and of the initial perturbation threshold are
in agreement with numerical simulations.

1 Introduction

We consider the fully nonlinear evolution of resonant plasma-wave interactions in the
presence of self trapped structures [1]. In this work, we derive a new theory, which
shows the relation between wave energy and phase-space density auto-correlation. The
mechanisms involved are relevant to many resonance-driven instabilities in laboratory
and space plasmas, in particular in the context of energetic particle interaction with
Alfvén waves, collisionless trapped electron modes and trapped ion ITG instabilities. To
illustrate our theory, we choose two simple models, which treat one-dimensional plasma.
The first model is the bump-on-tail instability [2], which is a fundamental paradigm for
the basic process of Langmuir waves driven by a supra-thermal population. The Berk-
Breizman (BB) extension of the bump-on-tail model includes an external wave damping γd
to account for linear dissipative mechanisms of the wave energy to the background plasma
[3]. The second model is the current-driven ion-acoustic (CDIA) instability, which is a
fundamental paradigm for sound-like waves driven by a velocity drift between thermal
ions and thermal electrons.

In both models, finite wave damping (externally applied in the BB model; due to
ion Landau damping in the CDIA model) allows for the spontaneous creation of self-
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trapped structures in the two-dimensional (2D) phase-space, called holes and clumps,
whose median velocity evolves in time, resulting in spectral components with a frequency
shift δω(t) (chirping). The growth of phase-space structures results from momentum
exchange between particles and wave, or between species, which is due to the dissipation
acting on structures. The evolution of holes and clumps is a self-organization process,
which provides the energy required to balance dissipation.

For the BB model, in the collisionless, single wave, single structure limit, the growth
rate of a structure of size ∆v is proportional to γd∆v∂vf0. Our simulations confirm the
validity of this result in both subcritical and supercritical conditions.

Instabilities in a regime where the wave is linearly stable (subcritical instabilities) have
been observed in BB simulations [3, 4] and CDIA simulations [5]. Based on the theory,
we explain the mechanism of subcritical instabilities as follows. Landau damping gener-
ates a seed phase-space structure, whose growth rate can be positive if the growth due
to momentum exchange overcomes the decay due to collisions. In addition, our theory
predicts the existence of a nonlinear instability in the marginally unstable regime, which
we confirm in our simulations.

2 Models

2.1 Berk-Breizman model

We adopt a perturbative approach, and cast the BB model in a reduced form, which
describes the time evolution of the beam particles only [3, 6]. In this sense, we note
that the BB model with extrinsic dissipation is also applicable to the traveling wave tube
”quasilinear experiment” with a lossy helix [7]. In this model, a single electrostatic wave
with a wave number k is assumed and the real frequency of the wave is set to ω = ωp, the
Langmuir plasma frequency. The evolution of the beam distribution, f(x, v, t), is given
by a kinetic equation,
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where δf ≡ f − f0, f0(v) is the initial velocity distribution.The evolution of the pseudo-
electric field E ≡ Z exp iζ + c.c. is given by
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∫
f(x, v, t) e−iζ dx dv − γd Z, (2)

where ζ ≡ kx− ωt, and n0 is the total density.
We use the COBBLES code [4] to solve the initial-value problem described above. In

our simulations, the velocity distribution f0 is designed with a constant slope between v =
−vR and v = 3vR, where vR = ω/k is the resonant velocity. We choose an experimentally-
relevant slope with γL0/ω = 0.1 [8], where γL0 = (πω3)/(2k2n0)∂vf0 is a measure of the
slope such that γ ∼ γL0 − γd.
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2.2 Ion-acoustic model

In this model we evolve two species s = i, e and the electric field self-consistently, assume
collisions are negligible, and do not filter a particular wave number. The CDIA model is
composed of two kinetic equations,

∂fs
∂t

+ v
∂fs
∂x

+
qsE

ms

∂fs
∂v

= 0, (3)

and a current equation,
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Our code COBBLES can also treat the above model. In our simulations, the initial
velocity distributions f0,s are two Gaussians with thermal velocity vth,s centered at v = vs.

3 Energy/Phasestrophy theorem

We can draw a parallel between 2D ideal fluids and 1D Vlasov plasmas. Both are 2D
Hamiltonian systems whose evolution is constrained by two invariants: energy and en-
strophy in the fluid case, wave energy and phasestrophy in the Vlasov case. This parallel
suggests that we can use a common strategy, which is based on solution of the two cou-
pled energy and enstrophy (fluid) or phasestrophy and wave energy (plasma) equations,
respectively.

The equations below can be applied to the BB case by removing the subscript s; or to
the CDIA case by taking γd = νa = νf = νd = 0. The evolution of phase-space structures
is described by the phasestrophy [9, 10],
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where angle brackets denote the spatial average.
Simple algebra yields an exact relation for the evolution of phasestrophy,
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where γcol
Ψ is the decay rate of phasestrophy due to collisions,
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The wave energy equation is
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FIG. 1: Growth of phasestrophy and wave
energy in the BB case. Inset: zoom on a
smaller timescale. Simulation parameters
are γL0/ω = 0.1, γd/γL0 = 0.7, νa/γL0 =
10−3 and νf = νd = 0.

FIG. 2: Growth of phasestrophy and wave
energy in the CDIA case. Parameters are
mi/me = 4, vth,e/vth,i = 2, and (ve −
vi)/vth,i = 3, which is below the linear sta-
bility threshold (3.92).

where W = n0q
2 〈E2〉 /(mω2

p) is the total wave energy, including sloshing energy. In the
BB case, us = ωp/(2k). In the CDIA case, we assumed that the dominant phase-space
structures are localized in a neighborhood of v = us. We assume that f0,s has a constant
slope in the velocity-range spanned by evolving phase-space structures, which is satisfied
in our simulations (exactly in the BB case; approximately in the CDIA case). Then,
phasestrophy evolution is linked to the wave energy evolution, by
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)
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In parallel with quasi-geostrophic fluids, this relation is the kinetic counterpart of the
Charney-Drazin non-acceleration theorem [11]. Fig. 1 shows a good quantitative agree-
ment between the lhs and the rhs in a BB simulation. Fig. 2 shows a qualitative agreement
between the lhs and the rhs in a CDIA simulation, where we have substituted us by the
velocity of maximum overlap between f0,i and f0,e, us = 1.42vth,i. The disagreement for
ωpet < 1000 corresponds to a phase where structures are not localized around v = us.
Other cases with different parameters show similar levels of agreement (not shown here).
Since phasestrophy is directly related to the perturbed momentum in the collisionless
limit, Ψs = −2dvf0,s

∫
v 〈δfs〉 dv, phasestrophy growth implies an exchange of momen-

tum, between structures and waves, or between species.

4 Single structure limit

In the BB case, we can apply this theory to calculate the nonlinear growth rate of an
isolated structure. We assume that δf is of the form δf = 〈δf〉 [1 + cos(kx+ θ)], with
a Gaussian profile, 〈δf〉 = h(t) exp [−(v − v0(t))2/(2∆v(t)2)]. This shape corresponds
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to a Bernstein-Green-Kruskal mode, which was shown to be a state of maximum entropy
subject to constant mass, momentum, and energy [1]. To relate W to Ψ, we use the
Poisson equation, even though (in the BB model) it is only approximately satisfied,
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Thus the evolution of phasestrophy follows a simple expression, dΨ/dt =
(
γΨ − γcol

Ψ

)
Ψ,

where γΨ is the collisionless phase-space structure growth-rate,
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To be concise, in this expression for γΨ we assumed ∆v dvf0 � kn0/ω and ∆̇v � γd∆v,
which are satisfied in our simulations. Eq. (11) is in qualitative agreement with the
collisionless structure growth-rate estimated in Ref. [12]. However, the method used in
the reference assumes that ∂E0/∂t � γdE0, which is only valid in the initial, linear
phase, near marginal stability. Fig. 3 shows the growth of phasestrophy, averaged over
a time window of duration γL0∆t = 100, where ∆v in the expression of γΨ is estimated
by fitting a Gaussian to 〈δf〉 in the vicinity of the hole at each time-step. We observe
a quantitative agreement between our simulations and theory for the supercritical case
(γd/γL0 = 0.5), and a qualitative agreement in the subcritical case (γd/γL0 = 1.05). There
is a 40% discrepancy in the subcritical case, which is due in part to the co-existence of a
secondary hole with 20% as much phasestrophy as that of the main hole. This suggests
that consideration of the primary-secondary hole interaction is necessary to improve the
accuracy of the theory.

FIG. 3: Growth rate of the phasestrophy of one isolated hole. Simulation parameters are
γL0/ω = 0.1, νa = 0, νf/γL0 = 0.3, νd/γL0 = 0.17, and two different values of γd, which
are given in the legend. Points: phasestrophy growth measured in simulations, including
contribution from collisions. Dashed curves: theory, Eq. (11).
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FIG. 4: Dashed curves: time-series of electric field
amplitude for different initial amplitudes. (a) Sub-
critical case, γd/γL0 = 1.05. (b) Supercritical case,
γd/γL0 = 0.98. The other simulation parameters
are given in Fig. 3. Solid line: theoretical nonlin-
ear instability threshold, Eq. (12).

FIG. 5: Nonlinear instability
threshold. Vertical bars: range
of electric field amplitude between
the highest stable and the lowest
unstable simulation. Solid line:
analytic theory, Eq. (12).

5 Nonlinear instability

Eq. (11) shows that the growth of structures is independent of linear stability, since it is not
related to the sign of the total linear growth rate γ ≈ γL0−γd. Nonlinear growth requires
a positive γd to enable momentum exchange, a positive slope for f0 to provide free energy,
and a seed structure with a width ∆v large enough for γΨ to overcome collisions. When
the linear growth rate γ is negative, the seed structure is the hole (clump) corresponding
to the v > vR (v < vR) part of the plateau, which is formed by particles trapped in the
finite initial electric field.

The nonlinear instability threshold is obtained by balancing the growth due to dis-
sipation with the decay due to collisions. If Krook-like collisions are negligible, then
γcol

Ψ ∼ ν3
d/(k∆v)2 and ∆vmin/vR ∼ 0.7νd(ωpγL0γd)

−1/3. The width of the electrostatic
potential well is 4ωb/k, which is twice the width of a seed hole. Here, the electric field
amplitude is measured by the bounce-frequency ωb = 2k|qZ|/m. Thus, the initial ampli-
tude threshold ωb,min is of the order of(
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∼ 0.12
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γd

)2/3 (
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)2

. (12)

Fig. 4(a) shows time-series of electric field amplitude ωb for different initial amplitudes,
for the case γd/γL0 = 1.05, which is a subcritical instability with γ/γL0 = −0.045. The
threshold between damped solutions and nonlinear instabilities is in agreement with
Eq. (12). We further investigate the validity of this scaling by performing a scan of
γL0/ωp = 0.02− 0.50, γd/γL0 = 1.01− 1.20 and νd/γL0 = 2 · 10−3 − 0.1. For each case, a
series of simulation with different initial amplitudes is performed, and we measure, after
one island turnover, the amplitude of the highest stable solution and the amplitude of
the lowest stable solution. Fig. 5 shows the range of the instability threshold. There is a
rough qualitative agreement with our theory. The discrepancy is expected since Eq. (12)
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corresponds to a single-hole limit, whereas most cases in Fig. 5 feature two or more dom-
inant holes and clumps. The picture of Landau damping seeding the structure is valid
only if the plateau shrinks slowly enough, |ω̇b| � ω2

b . This condition must be satisfied
during at least one orbit, which gives an additional condition on the initial amplitude,
namely ωb � (π + 1/2)|γ|. Alternatively put, we don’t expect subcritical instabilities
when damping exceeds γd,max = γL0 + 0.3ωb.

Subcritical instabilities have also been explained in terms of a nonlinear reduction of
ion Landau damping by particle trapping [13]. The mechanism of nonlinear drive we
discussed in this paper is different since, in the BB case, external damping is fixed; and
in the CDIA case, the nonlinear modification of the ion distribution can not account for
the measured growth rates.

In addition, our theory predicts the existence of a nonlinear instability for positive
but small γ. For a plateau of width 2∆v, Ψ ∼ ∆v3 and the growth due to the linear
instability is ∆̇v/∆v = γ/2. Then the nonlinear instability due to phasestrophy growth
is stronger than the linear growth if γΨ − γcol

Ψ > (3/2)γ. Our simulations confirm for the
first time the existence of such supercritical nonlinear instabilities for 0 < γ/γL0 < 0.04.
Fig. 4(b) shows time-series of electric field amplitude ωb for different initial amplitudes,
for γd/γL0 = 0.98, which is slightly above marginal stability with γ/γL0 = 0.018. The
threshold where the linear growth becomes nonlinear is in agreement with Eq. (12).

6 Conclusions

We obtain a general relation between wave energy and phasestrophy. This relation can
be applied in the BB case to obtain a simple expression for the growth rate of a single
phase-space structure, γΨ ∼ γdγL0∆v in the collisionless limit. This expression shows that
dissipation drives a nonlinear instability of holes and clumps via momentum exchange,
regardless of linear stability. This leads to faster-than-linear growth in barely unstable
regimes, as well as to subcritical instabilities, subject to the presence of a finite seed struc-
ture. Simulations in both subcritical and supercritical regimes show a good agreement
with analytic theory. The growth rate was obtained in the single structure case. Al-
though we expect similar physical processes in the presence of multiple holes and clumps,
the theory should be revisited by taking into account multi-structure interactions. This
will likely necessitate some form of turbulence closure theory. The calculation of structure
growth rate in the presence of multiple resonances [14] would be the logical next step.
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