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Abstract
The Berk–Breizman (BB) extension of the bump-on-tail instability includes a finite, fixed wave damping (γd), and
a collision operator with drag (νf ) and diffusion (νd). The BB model is applied to a one-dimensional plasma, to
investigate the kinetic nonlinearities, which arise from the resonance of a single electrostatic wave with an energetic-
particle beam. For a fixed value of the linear drive normalized to the linear frequency, γL0/ω0 = 0.1, the long-time
nonlinear evolution is systematically categorized as damped, steady-state, periodic, chaotic and chirping. The
chirping regime is sub-categorized as periodic, chaotic, bursty and intermittent. Up–down asymmetry and hooked
chirping branches are also categorized. For large drag, holes with quasi-constant velocity are observed, in which
case the solution is categorized into steady, wavering and oscillating holes. Two complementary parameter spaces
are considered: (1) the (γd, νd) space for fixed νd/νf ratios; (2) the (νf , νd) space for fixed γd/γL0 ratios, close
to and far from marginal stability. The presence of drag and diffusion (instead of a Krook model) qualitatively
modifies the nonlinear bifurcations. The bifurcations between steady-state, periodic and steady-hole solutions agree
with analytic theory. Moreover, the boundary between steady and periodic solutions agrees with analytic theory.
Nonlinear instabilities are found in both subcritical and barely unstable regimes. Quasi-periodic chirping is shown
to be a special case of bursty chirping, limited to a region relatively far from marginal stability.

(Some figures may appear in colour only in the online journal)

1. Introduction

A major concern in burning plasmas is that high-energy
ions can excite plasma instabilities in the frequency range of
Alfvén eigenmodes (AEs), which significantly enhance their
transport. Transport and loss of fast particles depend on both
the nonlinear saturation amplitude and the kind of nonlinear
behaviour. Many qualitatively different nonlinear regimes
have been observed in experiments [1], including a zoo of
spectral components whose frequency shifts on a time scale
much smaller than the profiles’ evolution time scale (nonlinear
chirping). The behaviours of these spectral components are
qualitatively diverse in terms of their intermittency [2–4], their
monotonicity in frequency shift [5, 6], their asymmetry [5, 7],
and whether frequency shifting branches end as a continuous
mode [8] or not. This work aims at defining and categorizing
each nonlinear regime in a systematic manner. Such a

a Present address: Itoh Research Center for Plasma Turbulence, Kasuga,
Kasuga Koen 6-1, 816-8580, Kyushu University, Japan.

categorization indicates how experimental input parameters
may be adjusted to change the nonlinear behaviour. For
instance, since Alfvén avalanches are often associated with
chirping bursts, rather than continuous modes, a good strategy
would be to avoid chirping bursts.

Near the resonant surface, it is possible to obtain a new
set of variables in which the three-dimensional (3D) plasma is
described by a one-dimensional Hamiltonian in two conjugated
variables [9–11], if we assume an isolated single resonance. In
this sense, the problem of AEs is homothetic to the well-known
paradigm of a single mode bump-on-tail instability. The Berk–
Breizman (BB) problem [9, 10, 12, 13] is a generalization of
the bump-on-tail problem, where we take into account an
external wave damping accounting for background dissipative
mechanisms at a rate γd, and a collision operator. Observed
quantitative similarities between the BB nonlinear theory and
both global simulations [11, 14] and experiments [15, 16] are
an indication of the validity of the aforementioned reduction
of dimensionality.
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The BB model has been extensively studied over the last
few decades, in the case where collisions are modelled by a
simple Krook-like operator with a collision frequency νa, or by
a velocity-diffusion operator. It has been predicted that three
kinds of behaviours emerge, namely steady-state, periodic or
chaotic responses, depending on the strength of each factor
[9, 10, 13]. In addition, chaotic solutions can display shifting
of the mode frequency (chirping). In general, two branches
coexist, with their frequency sweeping downwardly (down-
chirping) for one, upwardly (up-chirping) for the other, as
pairs of holes and clumps in the distribution evolve [17–19].
A systematic categorization of these nonlinear regimes in the
(γd, νa) parameter space for a fixed initial velocity distribution
has been performed numerically [20, 21]. However, recently,
Lilley and Lesur have shown that the inclusions in the collision
operator of dynamical friction, or drag, and diffusion have a
strong impact on the nonlinear behaviour, and is necessary to
qualitatively reproduce experimental chirping AEs [22, 23].

In this work, we name and define new sub-categories
of chirping, namely periodic, bursty, intermittent, chaotic,
steady hole, wavering hole, oscillating hole, hooked and sub-
categories that characterize the asymmetry between downward
and upward frequency sweeping. We develop an algorithm
to systematically determine the category to which a solution
belongs. This algorithm is applied to long-time Vlasov
simulations of the BB model with drag and diffusion. If
needed, it could be adapted to analyse experimental data.
Our simulation parameters correspond to a cold bulk, weak
warm beam plasma, with a constant slope around the resonant
velocity and a fixed value of the linear drive normalized to the
linear wave frequency, γL0/ω0 = 0.1, which is experimentally
relevant [6, 24, 25]. We study two complementary parameter
spaces: (1) the (γd, νd) space for fixed drag/diffusion ratios,
νd/νf = 1–5; (2) the (νf , νd) space for fixed damping
rates, close to and relatively far from marginal stability,
γ /γL0 = 0.05–0.4.

When νf � νd, the phase diagram is qualitatively
similar to what was obtained with Krook collisions, although
chirping solutions can be intermittent, bursty or periodic, in
addition to the chaotic behaviour found in the Krook case.
We show that quasi-periodic chirping is a special case of
bursty chirping, limited to a region where γd/γL0 = 0.2–
0.7. The presence of significant drag qualitatively modifies
the nonlinear bifurcations. Steady-state, periodic and chaotic
solutions, which are devoid of significant phase-space structure
dynamics, are replaced by long-lived phase-space holes. The
periodic chirping regime almost disappears. We confirm that
steady-state solutions only exist for collision frequencies above
a threshold predicted by analytic theory [22]. Moreover, the
boundary between steady and periodic solutions agrees with
analytic theory when the system is close to marginal stability.
Nonlinear instabilities are found in both subcritical (γ < 0)
and barely unstable (γ � γL0) regimes. We did not find any
solution for which downward chirping is dominant.

2. The BB model

2.1. Model description

We assume a single electrostatic wave, with a wave number k.
The assumption that the electric field is sinusoidal corresponds

to the situation of a single resonance, which is selected by
the geometry in more complex systems. It is appropriate to
normalize time to the plasma frequency ωp, distance to the
wave number k, density to the total plasma density n0 and
electric field tomω2

p/(ek), where e andm are the particle charge
and mass, and ω2

p ≡ n0e
2/(ε0m). We adopt a perturbative

approach, and cast the BB model in a reduced form, which
describes the time evolution of the beam particles only [26].
The main hypothesis in this approach is that the bulk particles
interact adiabatically with the wave, so that their contribution
to the Lagrangian can be expressed as a part of the electric
field. In this model, the linear frequency of the wave is
imposed as ω0 = ωp, which implies that in practice, time
is normalized to the linear frequency of the wave (without
nonlinear modification). Even when chirping occurs, ω0 does
not change. Chirping (existence of a significant spectral
component at finite δω ≡ ω − ω0) is due to the nonlinear
evolution of the amplitude and phase of the wave. The
evolution of the beam distribution, f (x, v, t), is given by a
kinetic equation,

∂f

∂t
+ v

∂f

∂x
+ Ẽ

∂f

∂v
= ν2

f
∂ (f − f0)

∂v
+ ν3

d
∂2 (f − f0)

∂v2
,

(1)

where the rhs is a collision operator, which includes both drag
and diffusion, f0(v) is the initial velocity distribution and the
pseudo-electric field Ẽ is defined as

Ẽ(x, t) ≡ Q(t) cos(x − t) − P(t) sin(x − t). (2)

The evolution of the pseudo-electric field is given by

dQ

dt
= − 1

2π

∫
f (x, v, t) cos(x − t) dx dv − γd Q, (3)

dP

dt
= +

1

2π

∫
f (x, v, t) sin(x − t) dx dv − γd P. (4)

The term proportional to γd is an external wave damping, which
is a model for all linear dissipative mechanisms of the wave
energy to the background plasma [26]. Equations (3) and (4)
are designed so that dW/dt = Ph − 2γdW , where W =
(Q2 + P 2)/2 is the total wave energy, including the sloshing
energy, and Ph is the power the energetic particles transfer to
the wave.

We refer to the above reduced model as the δf BB model.
Compared with the full-f model, the δf model does not take
into account effects of the time evolution of the bulk particle
velocity distribution. In addition, the δf model assumes a
constant total number of energetic particles.

2.2. Numerical simulations

In [21], we described the kinetic code COBBLES
(COnservative Berk–Breizman semi-Lagrangian Extended
Solver), capable of long-time simulations of the δf BB model
with a Krook collision operator. COBBLES was extended
to include drag and diffusion in the collision operator. We
verify the latter implementation in appendix A by comparing
simulations with a perturbative theory for the nonlinear
saturation of solutions to the BB model with drag and diffusion,
which was developed by Lilley [22]. This also constitutes
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Figure 1. Assumed initial velocity distribution, with γL0 = 0.1.

the first numerical validation of the above theory by direct
simulations of the non-truncated BB equations.

Hereafter, the initial velocity distribution f0 is designed
with a constant slope in the region where chirping occurs (as
long as δω/ω0 < 1, which is consistent with experiments).
We define γL0 as a measure of the slope of f0 at the resonant
velocity v = 1:

γL0 ≡ π

2

∂f0

∂v

∣∣∣∣
v=1

. (5)

In the collisionless limit, when γ � ω0, the linear growth rate
reduces to γ = γL0 − γd.

We arbitrarily choose

π

2γL0
f0(v) =




−v2 − v1

2
exp

[
σ 2 −

(
v − v1

vσ

+ σ

)2
]

if v < 0,

v − 1
if 0 � v � 2,

+
v2 − v1

2
exp

[
σ 2 −

(
v − v2

vσ

+ σ

)2
]

if v > 2,

(6)

with γL0 = 0.1, v1 = 0, v2 = 2, σ = 0.05 and vσ =
σ(v2 − v1). The linear drive γL, which is defined as the
linear growth rate in the absence of damping and collision,
is γL/ω0 = 0.09. This is consistent with energetic-particle-
driven experiments, where γL/ω0 is estimated within the range
∼0.1–30%. The function f0 is shown within the simulation
domain −0.57 < v < 2.57 in figure 1. It is acknowledged
that deviations from a constant-slope distribution are expected
to affect the nonlinear behaviour. Thus, when discussing
experiments, our analysis must be understood as an ideal case
where the energetic-particle distribution can be modelled with
a constant slope in a neighbourhood of the resonant velocity,
where the size of this neighbourhood depends on the domain
spanned by resonant wave–particle interactions and evolving
phase-space structures.

The electric field amplitude is measured by the bounce
frequency ωb = (Q2 + P 2)1/4 of particles that are deeply
trapped in the electrostatic potential. As the initial condition
we apply a small perturbation, f (x, v, t = 0) = f0(v)(1 +
ε cos x), with ε = 10−5 (ωb/γL0 = 0.03), unless stated
otherwise. The initial values of Q and P are given by solving
Poisson’s equation. All simulations are performed with at least

Nx = 128 and Nv = 2048 grid points in configuration space
and velocity space, respectively, and with a time-step width
	t = 0.1. If the electric field amplitude grows to large values,
where numerical convergence conditions (such as the Courant–
Friedrichs–Lewy condition) are not satisfied, then the numbers
of grid points are doubled, the time-step width is halved and
the simulation starts again from t = 0.

3. Nonlinear behaviour bifurcations

3.1. Categorization

We consider five main categories for the time evolution of
the instability. The category is obtained by an analysis of
ωb(t), and a spectrogram P(δω, t) of Ẽ(0, t). Since we want
to categorize the time-asymptotic behaviour, we restrict our
analysis to a time interval that starts well after the end of the
linear phase and the nonlinear saturation, ignoring the transient
evolution. A numerical solution is defined as

1. Damped: if the asymptotic-time limit of ωb(t) is zero;
2. Chirping: if there is a spectral component in P with

a significant amplitude whose frequency significantly
deviates from the linear mode frequency;

3. Steady state: if the asymptotic-time limit of ωb(t) is finite;
4. Periodic: if for large enough t there is a period τ for which

ωb(t + τ) → ωb(t);
5. Chaotic: if ωb(t) is bounded, but does not satisfy one of

the previous conditions.

The categories 1., 3., 4. and 5. were defined by Vann [20].
Each numerical solution is systematically categorized by an
algorithm, which follows a decision tree based on the one
developed by Vann. This algorithm was described and
benchmarked in [21]. Here we use the same algorithm, with
two slight improvements, which are described in appendix B.
We also changed the order in the decision tree: the test for
chirping is moved up to the second position. This test must be
done early because chirping solutions can satisfy the criteria
that define steady-state, periodic or chaotic behaviours.

We further categorize the repetitiveness, asymmetry and
shape of chirping solutions into qualitatively distinguishable
sub-categories. The following three sub-categorizations are
obtained by an analysis of P . Firstly, we define a chirping
solution as

4.A. Long-lived hole (clump): if the spectrogram is almost
never quiescent, and the average duration of a chirping
branch is much larger than the time it takes to reach
its maximum frequency shift. If long-lived chirping
branches dominate the δω > 0 (δω < 0) part of P ,
the category is long-lived hole (clump).

(a) Steady hole (clump): if the asymptotic-time limit of
the frequency shift of the dominant branch is finite;

(b) Oscillatory hole (clump): if for large enough t there
is a period τ for which the frequency shift of the
dominant branch, δω(t), satisfies δω(t +τ) → δω(t).
Also called snaking;

(c) Wavering hole (clump): otherwise;

4.B. Periodic chirping: if for large enough t there is a period
τ for which the whole spectrogram, P(δω, t), satisfies
P(δω, t + τ) → P(δω, t);

3
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4.C. Bursty chirping: if the spectrogram consists mainly of
alternating quiescent and non-quiescent phases, where
each non-quiescent phase comprises one and no more
than one major chirping branch;

4.D. Intermittent chirping: if the spectrogram mainly consists
of alternating quiescent and non-quiescent phases, but
each non-quiescent phase may comprise several major
chirping branches;

4.E. Chaotic: if the spectrogram is almost never quiescent and
without long-lived hole or clump, or if the spectrogram
is a mix of the above categories.

Here, major chirping branch refers to a chirping branch that
reaches a frequency shift close to the maximum reached by
any chirping branch after the initial transient phase. Quiescent
phases refer to time intervals where P(δω, t) is much smaller
than the maximum of the whole spectrogram (after the transient
phase). The difference between a steady-state solution and
a steady-hole solution is that the latter satisfies the criterion
for chirping. The same difference discriminate periodic
from oscillatory hole, as well as chaotic from wavering hole.
Although oscillatory hole solutions may satisfy the criteria for
periodic chirping solutions, the latter do not present any long-
lived hole or clump.

Secondly, we categorize the asymmetry between upward
and downward sweeping. We distinguish

• Upward chirping dominant: if the total power in the
δω > 0 part of the spectrogram is significantly larger
than the total power in the δω < 0 part;

• Upward chirping only: if the criterion for upward
dominant is satisfied and the maximum frequency shift
in the δω < 0 direction is insignificant;

• Downward chirping dominant: if the total power in the
δω < 0 part of the spectrogram is significantly larger than
the total power in the δω > 0 part;

• Downward chirping only: if the criterion for downward
dominant is satisfied and the maximum frequency shift in
the δω > 0 direction is insignificant;

• Symmetric: if none of the above conditions is satisfied.

Note that we choose to categorize asymmetry, not in terms
of the amplitude of frequency shift, but rather in terms of the
importance of phase-space structures. We do not categorize the
asymmetry for long-lived holes or clumps, since holes belong
to the δω > 0 side, while clumps belong to the δω < 0 side.
We make an arbitrary distinction between upward (downward)
chirping dominant and upward (downward) chirping only,
because it may be useful for experiments, where each case
can clearly be identified, and where phenomena that are
not included in the BB model could be responsible for a
physically meaningful distinction. Threshold parameters for
each category is given in section B.3 in the appendix.

Thirdly, we categorize whether the end of chirping
branches is hooked or not,

• Hooked: if most of the major chirping branches change
their sweeping direction after having reached their
maximum frequency shift;

• Not hooked: otherwise.

Figure 2. (a) Time series of electric field amplitude and (b), (c), (d)
spectrograms for typical non-chirping solutions with γd/γL0 = 0.8
and νd/νf = 5. The value of νd/γL0 is 0.50 for steady (b), 0.30 for
periodic (c) and 0.23 for chaotic (d). Each simulation corresponds
to a point in figure 6. Each spectrogram in this paper has a
logarithmic colour code, which spans three orders of magnitude.

We label only periodic, bursty, intermittent and chaotic
chirping solutions as hooking or not, since long-lived holes
and clumps are trivially hooked.

The quantitative definition and the numerical implemen-
tation of these sub-categories of chirping are described in ap-
pendix B. The thresholds in our categorization algorithm are
adjusted empirically.

3.2. Typical nonlinear behaviour

For a typical example of each nonlinear regime, figures 2–5
show the time evolution of the electric field amplitude.
For each example, we also show the spectrogram P(δω, t)

obtained with a shifting Fourier window of size 	tF = 512
and NF = 16 points per window.

Figure 2 shows three nonlinear regimes, which do not
feature frequency sweeping, namely steady, periodic and
chaotic. These solutions were predicted and observed when
collisions are modelled by a Krook operator, for sufficiently
large collisions.

Figure 3 shows three nonlinear regimes with frequency
sweeping, namely periodic chirping, bursty chirping and
intermittent chirping, which are not obtained in the Krook
case. The electric field amplitude displays clear relaxation

4
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Figure 3. (a) Time series of electric field amplitude and (b), (c), (d)
spectrograms for typical chirping solutions with γd/γL0 = 0.5 and
νd/νf = 5. The value of νd/γL0 is 0.14 for periodic chirping (b),
0.11 for bursty chirping (c) and 0.065 for intermittent chirping (d).
Each simulation corresponds to a point in figure 6.

oscillations, with more or less regularity depending on the
parameters. The periodic chirping regime of the BB model
was discovered and studied in detail in [23].

Figure 4(b) shows a fourth nonlinear regime with
frequency sweeping, namely chaotic chirping. This is also
an example of a solution with upward chirping dominant.
In general, chaotic chirping corresponds to an uninterrupted
generation of holes and clumps of various sizes, which yields
a spectrogram with many minor and major chirping branches
without clear quiescent phases. This latter behaviour is the
only chirping behaviour that was obtained in the Krook case.
There are also other kinds of chaotic chirping, not shown here,
where the spectrogram features several behaviours alternating
in time, for example bursty chirping and wavering hole.

For νf ∼ νd, dynamical friction significantly modifies
the shape of a chirping branch, up to a situation where the
sweeping direction of a chirping hole is reversed at some point,
as seen in figure 4(b), which is called hooked chirping. For
larger collision frequencies, the contradicting effects of drag
and dissipation on a hole seem to balance, yielding long-lived
holes with a more or less stable frequency shift. Such situations
have been observed and explained in [22]. Figure 5 shows three
nonlinear regimes with long-lived holes. When several holes
coexist, the categorization into steady, oscillatory or wavering
holes is based on the hole with the largest frequency shift,

Figure 4. (a) Time series of electric field amplitude and (b), (c), (d)
spectrograms for typical chirping solutions with νf = νd. The
parameters are γd/γL0 = 0.8, νd/γL0 = 0.13 for chaotic chirping
(b), γd/γL0 = 1.0, νd/γL0 = 0.05 for intermittent chirping (c), and
γd/γL0 = 1.2, νd/γL0 = 0.09 for a subcritical case (d). In the
subcritical case, we show the amplitude time-series for two choices
of initial amplitude ωb(0)/γL0: 0.03, which yields a damped
solution, and 1.0, which yields a nonlinear instability. Each
simulation corresponds to a point in figure 7.

which is observed to dominate the spectrogram. We observed
that the number of holes roughly increases with decreasing
collisionality.

In addition to these examples of each category, we mention
two interesting situations. In figure 4(d), γd/γL0 = 1.2
and the growth rate is negative, γ /γL0 = −0.18. Linear
theory predicts that a wave with a small amplitude is damped
exponentially, which is what we observe for a small initial
perturbation amplitude ωb/γL0 = 0.03. However, if we raise
the initial perturbation amplitude to ωb/γL0 = 1, although
the solution initially follows linear theory, it then reverses and
grows to a chirping state with a saturation level comparable
to supercritical solutions. This subcritical instability was first
observed for the BB model in [19]. The subcritical solution that
we show also happens to be an example of hooked chirping,
although close to the boundary between hook and no-hook
regimes, with chirping branches only slightly hooking. In
figure 4(c) and the corresponding amplitude time series in
figure 4(a), it appears that the wave is steady for a long time,
before growing explosively to a chirping state. In this case,
the growth rate is very small, γ /γL0 = 1.5 × 10−7. Since
the wave amplitude grows faster than the exponential growth

5
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Figure 5. (a) Time series of electric field amplitude and (b), (c), (d)
spectrograms for typical solutions with long-lived hole, with
γd/γL0 = 0.5. The parameters are νf/γL0 = 0.36, νd/γL0 = 0.27 for
steady hole (b), νf/γL0 = 0.16, νd/γL0 = 0.09 for wavering hole (c)
and νf/γL0 = 0.16, νd/γL0 = 0.12 for oscillatory hole (d). Inset:
zoom over a few oscillation periods of the amplitude. Each
simulation corresponds to a point in figure 9.

predicted by linear theory, we can conclude that the growth of
the wave is nonlinear. This nonlinear instability with γ > 0
is observed for the first time. For νf = νd = 0.05 γL0, we
observe nonlinear instabilities when γ /γL0 < 0.04. In the
same way as in the subcritical regime, the stability depends
on the initial perturbation amplitude. A consequence for
experiments is that, in both subcritical and supercritical cases,
the wave saturates to a high level ωb ∼ γL much sooner than
what linear theory predicts (γLt ∼ 103 instead of 108 for this
explosive case and 102 instead of ∞ for the subcritical case).
The mechanisms of subcritical and supercritical nonlinear
instabilities seem to be the same, which will be explained
in a future work. In a long-time point of view though, after
nonlinear saturation, the chirping behaviour does not depend
on the initial amplitude. The case in figure 4(c) is not a
new regime, rather an intermittent chirping case. Although
nonlinear instabilities require large seed perturbations, they
are relevant to experiments, where changes in equilibrium
profiles may bring a linearly unstable wave, which is saturated
to a relatively large amplitude, to a linearly stable state. If
the system alternates between supercritical and subcritical
regimes, hysteresis is expected.
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Figure 6. Behaviour bifurcation diagram for γL0 = 0.1 and
νd/νf = 5. The classification of each solution is plotted in the
(γd, νd) parameter space. The legend is shared between figures 6–9.
An absence of point signifies that longer, or better resolved
simulations are necessary to categorize the time-asymptotic
behaviour. The letter J indicates the JT-60U discharge E32359.

3.3. Small drag

To investigate the regime of small drag, we perform a series
of 260 simulations where νd/νf = 5, which is relevant to
present-day tokamaks [23]. Figure 6 shows the categorization
of each simulation result in the (γd, νd) parameter space. The
linear growth rate γ is obtained by solving the eigenvalue
problem corresponding to the linearized model equations.
Note the agreement between the linear stability threshold
γ = 0 and the boundary between linearly stable and unstable
simulations. This phase diagram is qualitatively similar to
what was obtained with Krook collisions. We recover the same
bifurcations from steady, to periodic, to chaotic, to chirping
as the collision frequencies decrease. We do not observe
chirping solutions for γd/γL0 < 0.1. The main difference is
that chirping solutions can be intermittent, bursty or periodic,
whereas we only observed chaotic chirping in the Krook case.
We observed that several holes and clumps with different
amplitudes coexist in the Krook case, while diffusion smooths
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out fine-scale structures, which explains isolated chirping
events we observe in the drag–diffusion case. Nonlinear
instabilities, including subcritical instabilities, are also found
when the initial amplitude is raised to ωb(t = 0)/γL0 = 1, for
collision frequencies slightly below the range of our diagram,
νd/γL0 < 0.04. Based on the analysis of [23], toroidal AEs
(TAEs) in JT-60U discharge E32359 are roughly located at
the point marked by the letter J in this diagram. In such a
case, the strategy to avoid chirping bursts would be to increase
the ratio γd/γL, perhaps by decreasing the beam injection
power, in order to bring the system closer to marginal stability.
Another approach would be to increase the effective collision
frequencies, but the required increase may be too difficult to
achieve.

When γ � γL0, a reduced integral equation for the time
evolution of the electric field amplitude was developed using
an extension based on the closeness to marginal stability [13],
in the case with Krook and diffusion collisions. Lilley included
drag into the reduced equation, and found that it does not
admit any steady solution when νd/νf < 1.043 [22]. This
steady-state threshold is shown in the bifurcation diagrams,
when relevant. When a steady-state solution does exist,
nonlinear stability analysis reveals that it is unstable when
νd < νcr(νf), where νcr(νf) can be calculated numerically
by solving a dispersion relation shown in the reference. As
νd crosses this threshold from above, a steady-state solution
bifurcates to a periodic solution. Therefore, we call νcr(νf)

the steady/periodic threshold, and include it in the bifurcation
diagrams, when relevant. Figure 6 is consistent with this
theory, since the whole behaviour diagram is above the steady-
state threshold and does admit steady solutions. It also shows
qualitative agreement with the steady/periodic threshold for
γ � γL0 (here γ /γL0 = 0.5 corresponds to γd/γL0 = 0.44 for
small νd).

3.4. Large drag

To investigate the effect of large drag, we perform a series of
221 simulations where νd/νf = 1, which may be more relevant
to ITER parameters [22]. Figure 7 shows the categorization
of each simulation result in the (γd, νd) parameter space. This
diagram is qualitatively different from what was obtained with
Krook collisions. We do not observe any steady solution,
which is consistent with the theoretical steady-state threshold.
Neither do we observe periodic or chaotic solutions. Instead,
long-lived holes fill the parameter space for large collision
frequencies. For νf/γL0 = νd/γL0 < 0.1 and γd > γL0,
we observe subcritical instabilities, which are stable for
ωb(t = 0)/γL0 = 0.03 but unstable for ωb(t = 0)/γL0 = 1.
Other stable solutions may be unstable for even larger initial
amplitudes. We find only 1 periodic chirping solution,
compared with 13 in the small drag case, which suggests that
quasi-periodically bursting AEs, which are often observed in
current tokamaks, may not or rarely be observed in ITER.

Since the initial distribution is symmetric around the
resonant velocity, the drag term is the only term in the δf –BB
model that is asymmetric around δω = v − 1 = 0. This is
consistent with the fact that we find only three upward chirping
dominant solutions when νf = νd/5, whereas most solutions
are upward chirping dominant or upward chirping only when

0.05

0.1

0.2

0.5

1

2

5

 0  0.2  0.4  0.6  0.8  1  1.2

ν d
 / 

γ L
0

γd / γL0

Figure 7. Behaviour bifurcation diagram for γL0 = 0.1 and
νd/νf = 1. The classification of each solution is plotted in the
(γd, νd) parameter space. In the bottom right corner, superposed
symbols show subcritical solutions for which the amplitude is
damped when ωb/γL0 = 0.03, but unstable when ωb/γL0 = 1.

νf = νd (steady-hole solutions are trivially asymmetric). Drag
has a counter-intuitive effect on chirping asymmetry. Since the
effect of drag on any phase-space structure is to advect it from
large to small velocities, one could imagine that the presence
of drag would make down chirping dominant. However,
upward chirping dominates and a physical explanation is
proposed in [22].

3.5. Close to marginal stability

Let us investigate the barely unstable regime, which is relevant
for theory and may be relevant for ITER in some cases [27].
We perform a series of 204 simulations where γd/γL0 = 0.9,
which is near marginal stability in the sense that γ /γL ≈ 0.05.
Figure 8 shows the categorization of each simulation result in
the (νf , νd) parameter space. The linear stability threshold is
out of the range of this plot. As predicted by theory, steady-
state solutions exist only above the steady-state threshold.
Moreover, the boundary between steady and periodic solutions
agrees with the theoretical steady/periodic threshold.

3.6. Farther from marginal stability

To investigate the nonlinear behaviour relatively far from
marginal stability (from an instantaneous point of view,
not necessarily from a time-averaged point of view), we
perform a series of 204 simulations where γd/γL0 = 0.5,
which is relevant for experiments [23]. Figure 9 shows
the categorization of each simulation result in the (νf , νd)
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Figure 8. Behaviour bifurcation diagram for γL0 = 0.1 and
γd/γL0 = 0.9. The classification of each solution is plotted in the
(νf , νd) parameter space.

parameter space. The linear stability threshold is out of the
range of this plot. The agreement with the theoretical steady-
state threshold and steady/periodic threshold is not as good as
when γd/γL0 = 0.9, which is expected since for γd/γL0 = 0.5,
γ /γL0 ≈ 0.4.

3.7. General remarks

In all cases, each category is relatively isolated in a well-
defined region, rather than dispersed in the whole parameter
space. Note also that the region of hooked chirping is
contiguous to the region of a long-lived hole. These remarks
bring more confidence in our categorization algorithm.

All periodic chirping solutions satisfy our criteria for
bursty chirping. In this sense, periodic chirping is a special case
of bursty chirping. Periodic chirping solutions are restricted
to a region where γd/γL = 0.2–0.7, which is relatively far
from marginal stability. This suggests that, in AE experiments
that feature periodic chirping bursts, one must be careful in
using the assumption γd ≈ γL, which stems naively from self-
organization arguments.

Although the terms in νf and νd in the BB equations are
referred to as drag and diffusion, they do not correspond to drag
and diffusion in the sense of a 3D Fokker–Planck collision
operator, but rather to a projection of these operators on a
resonant surface of one AE for instance. In fact, νf includes
contributions from the slowing-down term, the pitch-angle
scattering term and the parallel velocity diffusion, while νd

includes contributions from the pitch-angle scattering term and
the parallel velocity diffusion [22, 23].
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J

Figure 9. Behaviour bifurcation diagram for γL0 = 0.1 and
γd/γL0 = 0.5. The classification of each solution is plotted in the
(νf , νd) parameter space.

We do not observe either long-lived clump or down-
chirping dominant cases, which are often observed in the
experiment. Although the reason eludes us, we can speculate
that down-chirping dominant cases in TAE experiments may be
the result of reversed magnetic shear, which effectively brings
a minus sign in front of ν2

f in equation (1) when the 3D Fokker–
Planck operator is projected on the resonant surface. However,
there are other possible causes, such as particular shapes of f0

with a non-constant slope, departures from the adiabatic bulk
hypothesis and processes that are not included in the BB model.

4. Conclusions

In this paper, we proposed a qualitative definition for each
chirping regime of the BB model with drag and diffusion,
and gave the corresponding quantitative criteria. We have
developed an algorithm with empirically adjusted thresholds,
which systematically categorizes a simulation result, and could
also be used to analyse experimental data. We investigated
the parameter space for a constant-slope energetic-particle
distribution and a wide range of parameters, which includes
ITER-relevant collision frequencies, or parameters that can
be used to reproduce magnetic signals of JT-60U and MAST
experiments.

The above behaviour bifurcation diagrams show, for
the first time, the parameter range for each regime, and
the relationship between regimes. They indicate how input
parameters in AE experiments and simulations may be
modified to reach a regime of interest.

Ultimately, nonlinear behaviour bifurcations may be used
to mitigate energetic-particle transport in AE experiments.
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For example, chirping bursts correspond to self-coherent
phase-space structures evolving in the velocity direction in
the BB model, which corresponds to the toroidal angular
momentum in the 3D AE problem. Thus, in experiments,
we can speculate that chirping bursts correspond to radially
evolving self-coherent structures and be associated with
convective transport. However, we must note the following
caveats. (1) Although quantitative similarities between AE
experiments and the BB model have been found, a one-to-
one correspondence has not been established, leaving some
uncertainty in any experimental analysis based on the BB
model. (2) Processes that are not included in the BB model,
such as turbulence-induced drag and diffusion, may change
the whole qualitative picture, or yield new kinds of behaviour,
such as long-lived clumps if some process brings an effect
opposite to collisional drag. (3) Several resonances or several
modes coexist in most experiments, and can interact to produce
other kinds of behaviour, such as avalanches. The interaction
between several resonances is a hot topic currently under
investigation.

In addition, we discovered the existence of a nonlinear
instability in the barely unstable regime.
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Appendix A. Verification of COBBLES with drag
and diffusion

In [21], COBBLES was verified solely when collisions are
modelled by a Krook operator. It is necessary to verify
our implementation of drag and diffusion. Firstly, we
confirm that, in the absence of an electric field, a Gaussian
perturbation in the velocity distribution follows the analytic
solution of the Fokker–Planck equation. As an additional test,
we compare saturation amplitudes and steady-state solutions
between δf -COBBLES and analytic predictions derived in
[28]. Figures A1 and A2 show the saturated electric field
amplitude and the perturbed velocity distribution δf (v) =
〈f 〉 − f0 at γL0t = 1000 in δf -COBBLES simulations with
γL0 = 0.1, γd/γL0 = 0.9 and different collision frequencies.
We observe qualitative agreement with theory. The source
of the quantitative discrepancy we observe is unknown as
yet. It may be explained by a deviation from the condition
γ /γL0 � 1, which is used in theory for the perturbative
treatment of the nonlinearities. We ruled out border effects
by checking that doubling the velocity range, where the slope
of f0 is constant (v1 = −1, v2 = 3 and Nv = 4096), does not
significantly reduce the disagreement.
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Figure A1. Steady-state saturation level with drag and diffusion.
The points correspond to δf simulations with γL0 = 0.1 and
γd/γL0 = 0.9. The solid curve corresponds to analytic theory.
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Figure A2. Perturbed velocity distribution in a steady state. The
points correspond to δf simulations with γL0 = 0.1, γd/γL0 = 0.9
and νd/γL0 = 5. The dashed lines correspond to analytic theory.

Appendix B. Categorization algorithm

Since we want to categorize the time-asymptotic behaviour,
rather than the initial, transient behaviour, we define a time
tmin before which the solution is ignored:

tmin ≡ max

(
tmax, ν−1

eff , 5
2π

|γ |
)

, (B.1)

where tmax is the total simulation time and νeff =
max(ν2

f /γL0, ν3
d/γ

2
L0). Hereafter, P refers to a spectrogram

of the electric field at x = 0, obtained with a shifting Fourier
window of size 	tF = 512 and NF = 16 points per window.
We write Pn

j ≡ P(δωj , tn) the power in this spectrogram at
a discrete time tn = tmin + n	t and for a discrete frequency
shift δωj = j	ω, where 	t = 	tF/NF , and 	ω = 2π/	tF .
Pglob

max is the global maximum of P for t > tmin.
To analyse P , we track chirping branches in the following

way. To simplify the explanations, let us consider the δω � 0
part of P only. For each time step n � 0, we search for local
maxima Pn

j > Pn
j±1 and interpolate the corresponding values
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of P and δω:

Pn
max = Pn

j −
(
Pn

j+1 − Pn
j−1

)2
/8

Pn
j−1 − 2Pn

j + Pn
j+1

(B.2)

and

δωn
max = δωj − 	ω

2

Pn
j+1 − Pn

j−1

Pn
j−1 − 2Pn

j + Pn
j+1

. (B.3)

We keep only those maxima for which Pn
max > αpPglob

max , with
αp = 0.05. To track a chirping branch δωn, we search for
maxima that are contiguous in time. For each n � 0, δωn+1

takes the value of the local maximum δωn+1
max the closest to

δωn. Initially, we lock on the maximum with the largest δω

(by initializing δω−1 to a very large positive value). If one
of the two following conditions is met, the current chirping
branch is considered to be terminated and the tracking of the
next chirping branch starts: (1) there is no local maximum
as defined above; or (2) the difference is much larger than a
theoretical prediction [17]:

	ωcut(δω) = 256

27π4

γ 2
L0γd

δω
	t, (B.4)

more precisely |δωn+1 − δωn|/αcut > 	ωcut(δω
n),

	ωcut(δω
n+1), with αcut = 5.

Independently, we define δω
glob
max as the maximum of δω

for which P is a local maximum that satisfies P > εpPglob
max ,

with εp = 0.01.

B.1. Recurrence effect and chirping

To categorize a solution as damped, steady state, periodic,
chaotic or chirping, we use a slightly improved version of an
algorithm, which was described and benchmarked in [21].
There are two improvements.

Firstly, as can be seen in figure 3(a), periodic, bursty
and intermittent chirping (which do not appear in former
works with a Krook collision operator) could be mistaken for
solutions that suffer from a spurious recurrence effect. To
distinguish these two situations, we compare the theoretical
recurrence time TR = 2π/	v, where 	v is the velocity
grid size, with the times where the amplitude grows back
from a numerical noise level to a significant level. More
precisely, if ωb(t) decays below a threshold ε0 = 10−7,
the solution is damped, unless there is a time tr such as
0.45TR < tr(modTR) < 0.55TR, for which ωb(tr) > α0, with
α0 = 10−4. A caveat is that periodic chirping with a period
close to the recurrence time is spuriously identified as damped,
but we checked that this did not happen in our analysis.

Secondly, as can be seen in figure 2(c), some non-chirping
solutions can have a spectrogram with significant power for
|δω|/ω0 ≈ 0.01 − 0.05, which is why we previously defined
the threshold for chirping at 0.05. On the other hand, some
chirping solutions have an amplitude of frequency shift as small
as |δω|/ω0 ≈ 0.04, which were spuriously categorized as not
chirping. To remedy this issue (using our chirping branch
tracking method), a solution is now identified as chirping if
and only if there is a chirping branch such that |δωn|/ω0 > ε7

for some n � 0. We choose ε7 = 0.03.

B.2. Kind of chirping

To categorize chirping solutions, we analyse the chirping
branches as follows. We count the number of chirping
bursts Nbursts, defined as the number of time where a chirping
branch crosses a threshold δωn = αburstδω

glob
max from below,

where αburst = 0.4. We retrieve the maximum duration of a
chirping branch T

chirping
max , the cumulated duration of all chirping

branches T
chirping

total , the maximum duration of a quiescent phase

T
quiescent

max and the cumulated duration of all quiescent phases
T

quiescent
total , where a quiescent phase is defined as a time interval

between two successive chirping branches. To sort out whether
a long-lived hole is steady, oscillatory or chaotic, we take the
longest chirping branch δωn

longest, and use basically the same
algorithm as the one we use to categorize the time series of the
electric field amplitude, but for δωn

longest instead of ωb(tn). In
other words we define W(tn) ≡ δωn

longest, its mean value 〈W 〉,
maximum Wmax and minimum Wmin, the oscillation amplitude
	W ≡ Wmax −Wmin, and the local minima (maxima) as points
where W(tn) is smaller (larger) than W(tn−1) and W(tn+1).
As a measure of the periodicity, we compute the two-point
correlation function as

R(τ) = 1

m

m−1∑
l=0

〈W̃l(τ, τ
′)W̃l+1(τ, τ

′)〉√
〈W̃l(τ, τ ′)2〉

√
〈W̃l+1(τ, τ ′)2〉

, (B.5)

where, for each correlation window size τ ,

W̃l(τ, τ
′) ≡ W(tbranch − l τ − τ ′) − 〈W(tbranch − l τ )〉,

(B.6)

m = tbranch/τ is the number of period included in the duration
tbranch of the chirping branch, and the angular brackets represent
the time average over a period,

〈W̃ (τ, τ ′)〉 = 1

τ

∫ τ

0
W̃ (τ, τ ′)dτ ′. (B.7)

The overall correlation R0 is defined as the maximum of R(τ)

for τ > τc, where τc is the shortest period such that R(τc) � 0.
In other words, R0 is the normalized amplitude of the peak
in the two-point correlation function corresponding to the
dominant frequency.

We then proceed to the following decision tree:

4.A. IF T
quiescent

total /T
chirping

total < ε11 AND Nbursts < ε12T
chirping

total /

T
chirping

max THEN long-lived hole
(a) IF each minima (maxima) is larger (smaller) than the

former OR 	W/ 〈W 〉 < ε13 THEN steady hole
(b) ELSE IF R0 > 1 − ε14 THEN oscillatory hole
(c) ELSE IF the number of extrema is not less than four

THEN wavering hole
(d) ELSE failure of the categorization

4.B. ELSE IF Rwhole
0 > 1 − ε15 THEN periodic chirping

4.C. ELSE IF |T chirping
total /(NburstsT

chirping
max ) − 1| < ε16 THEN

bursty chirping
4.D. ELSE IF T

quiescent
total > ε17T

chirping
total THEN intermittent

chirping
4.E. ELSE chaotic chirping,

where Rwhole
0 is defined in the same way as R0, but for the whole

time series that comprises all chirping branches instead of the
longest chirping branch only. The thresholds are empirically
adjusted to ε11 = 0.2, ε12 = 0.5, ε13 = 0.01, ε14 = 0.25,
ε15 = 0.25, ε16 = 0.3 and ε17 = 0.5.
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B.3. Chirping asymmetry

We define the total upward power Pup
total ≡ ∑

n,j>0 Pn
j , the

total downward power Pdown
total ≡ ∑

n,j<0 Pn
j , the maximum

frequency shift reached by any upward chirping branch, δωup
max

and the maximum frequency shift reached by any downward
chirping branch, δωdown

max . We then proceed to the following
decision tree:

• IF Pup
total > αaPdown

total AND |δωdown
max |/ω0 > ε7 THEN

upward chirping dominant
• ELSEIF Pup

total > αaPdown
total THEN upward chirping only

• ELSEIF Pdown
total > αaPup

total AND δω
up
max/ω0 > ε7 THEN

downward chirping dominant
• ELSEIF Pdown

total > αaPup
total THEN downward chirping only

• ELSE symmetric,

with αa = 3.

B.4. Hooks

Hooks are identified by the following decision tree:

• IF there is a chirping branch of maximum frequency shift
δωbranch and an n for which δωn < (1 − εh) δωbranch and
δωn < δωbranch − 	ω and δωn > nh	ω and δωn >

αhδωbranch THEN hooked
• ELSE no hook,

with εh = 0.01, αh = 0.5 and nh = 10.
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