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Nonlinear instabilities driven by coherent phase-space structures
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In the presence of wave dissipation, phase-space structures emerge in nonlinear Vlasov dynamics. Our theory
gives a simple relation between the growth of these coherent structures and that of the wave energy. The structures
can drive the wave by direct momentum exchange, which explains the existence of nonlinear instabilities in both
barely unstable and linearly stable (subcritical) regimes. When dissipation is modeled by a linear term in the
field equation, simple expressions of a single-hole growth rate and of the initial perturbation threshold are in
agreement with numerical simulations.
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Instability dynamics [1,2] is of great interest in the context
of pattern formation [3], the onset of turbulence [4], and many
other subjects. While instabilities are central to virtually every
field of physics, in collisionless or weakly collisional plasmas
the disparate roles of resonant and nonresonant particles offers
an interesting variation on time-honored methods and ap-
proaches. In this respect, it has long been realized that wave and
instability dynamics and evolution in a collisionless plasma can
be described in terms of coupled, interpenetrating ensembles
of resonant and nonresonant particles or, equivalently, resonant
particles and a gas of plasmon quasiparticles. While the
linear theory of the Vlasov plasma is well established, its
nonlinear theory is a rich and still-evolving subject. Rather
little, however, is understood about nonlinear, or subcritical,
Vlasov stability, in which the growth process circumvents
linear theory [5]. One idea concerning subcritical processes
derives from the properties of phase-space granulations or
structures, which can exchange momentum via channels which
differ from that of familiar wave-particle resonance, and so
can tap free energy when wave excitation cannot [6]. Such
granulations are self-bound aggregations of resonant particles,
which constitute a novel collective exciton. In this Rapid
Communication, we present a theory of subcritical Vlasov
plasma instability formulated in terms of the evolution of
waves and phase-space density correlations. Not surprisingly,
the theory for one-dimensional (1D) Vlasov plasmas has
considerable overlap with those describing the evolution of
flows in a quasigeostrophic fluid. Both are two-dimensional
(2D) systems which support waves, and are constrained by
two invariants: energy and enstrophy in the fluid case, wave
energy and phasestrophy in the Vlasov case. The mechanisms
involved are relevant to many laboratory and space plasmas,
in particular, in the context of energetic particle interaction
with Alfvén waves, collisionless trapped electron modes, and
trapped ion ITG instabilities.

To illustrate our theory, we choose two simple models
that treat one-dimensional plasmas. The first model is the
bump-on-tail instability, which is a fundamental paradigm for
the basic process of Langmuir waves driven by a suprathermal
population. The Berk-Breizman (BB) extension of the bump-
on-tail model includes an external wave damping γd to account
for linear dissipative mechanisms of the wave energy to the

background plasma [7]. The second model is the current-
driven ion-acoustic (CDIA) instability, which is a fundamental
paradigm for sound waves driven by a velocity drift between
thermal ions and thermal electrons. In both models, finite
wave damping (externally applied in the BB model; due to
ion Landau damping in the CDIA model) allows for the
spontaneous creation of self-trapped structures (called holes
and clumps) in the 2D phase space, whose median velocity
evolves in time, resulting in spectral components with a
frequency shift δω(t) (chirping). The growth of phase-space
structures results from momentum exchange between the
structure and the wave, or between species, which is due to
the dissipation acting on structures. The evolution of holes
and clumps is a self-organization process, which provides the
energy required to balance dissipation.

Subcritical instabilities have been observed in BB simula-
tions [7,8] and CDIA simulations [9]. Based on the theory, we
explain the mechanism of subcritical instabilities as follows.
Landau damping generates a seed phase-space structure,
whose growth rate can be positive if the growth due to
momentum exchange overcomes decay due to collisions. In
addition, our theory predicts the persistence of nonlinear
instability in the marginally linear unstable regime. The
theoretical arguments are in good agreement with results from
high resolution numerical simulations.

For the first model, we adopt a perturbative approach, and
cast the BB model in a reduced form, which describes the
time evolution of the beam particles only [7,10]. In this sense,
we note that the BB model with extrinsic dissipation is also
applicable to the traveling wave tube “quasilinear experiment”
with a lossy helix [11]. In this model, a single electrostatic
wave with a wave number k is assumed and the real frequency
of the wave is set to ω = ωp, the Langmuir plasma frequency.
The evolution of the beam distribution, f (x,v,t), is given by
a kinetic equation

∂f

∂t
+ v

∂f
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k

∂δf
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d
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∂2δf

∂v2
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where δf ≡ f − f0, and f0(v) is the initial velocity distribu-
tion. The evolution of the pseudoelectric field E ≡ Z exp iζ +
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c.c. is given by

dZ

dt
= − mω3

p

4πqn0

∫
f (x,v,t)e−iζ dx dv − γd Z, (2)

where ζ ≡ kx − ωt , and n0 is the total density.
For the second model, we include two species s = i,e,

assume collisions are negligible, and do not filter a particular
wave number. The CDIA model is composed of two kinetic
equations, ∂tfs + v∂xfs + (qs/ms)E∂vfs = 0. and a current
equation,

∂E

∂t
= −mω2

p

n0q2

∑
s

∫
vfs(x,v,t)dv. (3)

We use the COBBLES code [8] to solve the initial-value
problems described above. In BB simulations, the velocity
distribution f0 is designed with a constant slope such that
γL0/ω = 0.1 [12], where γL0 = (πω3)/(2k2n0)∂vf0 is a mea-
sure of the slope such that γ ∼ γL0 − γd . In CDIA simulations,
the initial velocity distributions f0,s are two Gaussians with
thermal velocity vth,s centered at v = vs . We choose mi = 4me,
vth,e = 2vth,i (Te = Ti), and a drift (ve − vi)/vth,i = 3, which
is below the linear CDIA stability threshold (3.92).

The equations below can be applied to the BB case by
removing the subscript s, or to the CDIA case by taking γd =
νa = νf = νd = 0. The evolution of phase-space structures
follows that of the phasestrophy [13,14],

	s ≡
∫ ∞

−∞

〈
δf 2

s

〉
dv, (4)

where the angle brackets denote the spatial average.
Simple algebra yields an exact relation for the evolution of

phasestrophy,

d	s

dt
= −2

qs

ms

∫ ∞

−∞

df0,s

dv
〈E δfs〉 dv − γ col

	 	s, (5)

where γ col
	 is the decay rate of phasestrophy due to collisions,

γ col
	 = 2νa + 2

	s

ν3
d

k2

∫ ∞

−∞

〈(
∂δfs

∂v

)2〉
dv. (6)

Note that collisional drag νf does not appear in the latter
expression.

The wave energy equation is

dW

dt
+ 2γdW = −2

∑
s

usqs

∫
〈E δfs〉 dv, (7)

where W = n0q
2
〈
E2

〉
/(mω2

p) is the total wave energy, in-
cluding sloshing energy. In the BB case, us = ωp/(2k). In the
CDIA case, we assumed that the dominant phase-space struc-
tures are localized in a neighborhood of v = us . We assume
that f0,s has a constant slope in the velocity range spanned by
evolving phase-space structures. Then, phasestrophy evolution
is linked to the wave energy evolution by

dW

dt
+ 2γdW =

∑
s

msus

dvf0,s

(
γ col

	 + d

dt

)
	s. (8)

In parallel with quasigeostrophic fluids, this relation is the
kinetic counterpart of the Charney-Drazin nonacceleration
theorem [15]. Figure 1 shows good quantitative agreement

FIG. 1. (Color online) Growth of phasestrophy and wave energy
in the BB case. Inset: Zoom on a smaller time scale. Simulation
parameters are γL0/ω = 0.1, γd/γL0 = 0.7, νa/γL0 = 10−3, and νf =
νd = 0.

between the left-hand side (lhs) and the right-hand side (rhs)
in a BB simulation. Figure 2 shows qualitative agreement be-
tween the lhs and the rhs in a CDIA simulation, where we have
replaced us by the velocity of maximum overlap between f0,i

and f0,e, us = 1.42vth,i . For ωpet < 1000, structures are not
localized around v = us , which accounts for the discrepancy.
Since phasestrophy is directly related to the perturbed mo-
mentum in the collisionless limit, 	s = −2dvf0,s

∫
v〈δfs〉dv,

phasestrophy growth implies an exchange of momentum,
between structures and waves, or between species.

In the BB case, we can apply the above general theory
to obtain an expression for the nonlinear growth rate of
an isolated phase-space structure. We assume that δf is
of the form δf = 〈δf 〉[1 + cos(kx + θ )], with a Gaussian
profile, 〈δf 〉 = h(t) exp{−[v − v0(t)]2/[2�v(t)2]}. This shape
corresponds to a Bernstein-Green-Kruskal mode, which was
shown to be a state of maximum entropy subject to constant
mass, momentum, and energy [6]. To relate W to 	, we use
the Poisson equation, even though (in the BB model) it is only

FIG. 2. (Color online) Growth of phasestrophy and wave energy
in the CDIA case.
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FIG. 3. (Color online) Growth rate of the phasestrophy of
one isolated hole. Simulation parameters are γL0/ω = 0.1, νa = 0,
νf /γL0 = 0.3, νd/γL0 = 0.17, and two different values of γd , which
are given in the legend. Points: Phasestrophy growth measured in
simulations, including a contribution from collisions. Dashed curves:
Theory, Eq. (10).

approximately satisfied,

W = 1

2

mω2
p

k2n0

(∫
〈δf 〉 dv

)2

. (9)

Thus the evolution of phasestrophy follows a simple expres-
sion, d	/dt = (

γ	 − γ col
	

)
	, where γ	 is the collisionless

phase-space structure growth rate,

γ	 ≈ 16

3
√

π

�v

vR

γL0

ωp

γd. (10)

To be concise, in this expression for γ	 we assumed
�v dvf0 	 kn0/ω and �̇v 	 γd�v, which are satisfied in
our simulations. Equation (10) is in qualitative agreement with
the collisionless structure growth rate estimated in Ref. [16].
However, the method used in the reference assumes that
∂E0/∂t 	 γdE0, which is only valid in the initial, linear phase,
near marginal stability. Figure 3 shows the growth of phasestro-
phy, averaged over a time window of duration γL0�t = 100,
where �v in the expression of γ	 is estimated by fitting a
Gaussian to 〈δf 〉 in the vicinity of the hole at each time step.
We observe quantitative agreement between our simulations
and theory for the supercritical case (γd/γL0 = 0.5), and
qualitative agreement in the subcritical case (γd/γL0 = 1.05).
There is a 40% discrepancy in the subcritical case, which is
due in part to the coexistence of a secondary hole with 20%
as much phasestrophy as that of the main hole. This suggests
that consideration of the primary-secondary hole interaction is
necessary to improve the accuracy of the theory.

Equation (10) shows that the growth of structures is
independent of linear stability, since it is not related to the
sign of the total linear growth rate γ ≈ γL0 − γd . Nonlinear
growth requires a positive γd to enable momentum exchange, a
positive slope for f0 to provide free energy, and a seed structure
with a width �v large enough for γ	 to overcome collisions.
When the linear growth rate γ is negative, the seed structure
is the hole (clump) corresponding to the v > vR (v < vR)
part of the plateau, which is formed by particles trapped in
the finite initial electric field. Subcritical instabilities have

FIG. 4. (Color online) Dashed curves: Time series of electric
field amplitude for different initial amplitudes. (a) Subcritical case,
γd/γL0 = 1.05. (b) Supercritical case, γd/γL0 = 0.98. The other
simulation parameters are given in Fig. 3. Solid line: Theoretical
nonlinear instability threshold, Eq. (11).

also been explained in terms of a nonlinear reduction of ion
Landau damping by particle trapping [17], which is a different
mechanism.

If Krook-like collisions are negligible, then γ col
	 ∼

ν3
d/(k�v)2 and k�vmin ∼ 0.7νdγ

−1/3
L0 γ

−1/3
d ω

2/3
p . The width of

the electrostatic potential well is 4ωb/k, which is twice the
width of a seed hole. Here, the electric field amplitude is
measured by the bounce frequency, ω2

b = 2k|qZ|/m. Thus,
the initial amplitude threshold ωb,min is of the order of

(
ωb,min

ωp

)2

∼ 0.12

(
ωp

γL0

ωp

γd

)2/3 (
νd

ωp

)2

. (11)

Figure 4(a) shows a time series of electric field amplitude
ωb for different initial amplitudes, for the case γd/γL0 =
1.05, which is a subcritical instability with γ /γL0 = −0.045.
The threshold between damped solutions and nonlinear in-
stabilities is in agreement with Eq. (11). We further in-
vestigate the validity of this scaling by performing a scan
of γL0/ωp = 0.02–0.50, γd/γL0 = 1.01–1.20, and νd/γL0 =
2 × 10−3–10−1. For each case, a series of simulations with
different initial amplitudes is performed, and we measure, after
one island turnover, the amplitude of the highest stable solution
and the amplitude of the lowest stable solution. Figure 5 shows
the range of the instability threshold, and compares it against
(a) our theory, and (b) the scaling obtained in Ref. [7] in the

FIG. 5. (Color online) Vertical bars: Range of electric field
amplitude between the highest stable and the lowest unstable
simulation. Dotted line: Theory described in (a) this work and (b)
Ref. [7].
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limit ωb 	 γL,

ω2
b,min ∼ ν2

d max

[(
νd

γL0

)1/2

,

( |γL0 − γd |
γL0

)1/2]
. (12)

Note that the two theories are not incompatible. The observed
error in Fig. 5(a) is expected since Eq. (11) corresponds to a
single-hole limit. The picture of Landau damping seeding the
structure is valid only if the plateau shrinks slowly enough,
|ω̇b| 	 ω2

b. This condition must be satisfied during at least
one orbit, which gives an additional condition on the initial
amplitude, namely, ωb 
 (π + 1/2)|γ |.

In addition, our theory predicts the existence of a nonlinear
instability for positive but small γ . For a plateau of width
2�v, 	 ∼ �v3 and the growth due to the linear instability
is �̇v/�v = γ /2. Then the nonlinear instability due to
phasestrophy growth is stronger than the linear growth if
γ	 − γ col

	 > (3/2)γ . We discovered numerically the existence
of such supercritical nonlinear instabilities for 0 < γ/γL0 <

0.04. Figure 4(b) shows a time series of electric field amplitude
ωb for different initial amplitudes, for γd/γL0 = 0.98, which
is slightly above marginal stability with γ /γL0 = 0.018. The
threshold where the linear growth becomes nonlinear is in
agreement with Eq. (11).

To summarize, we obtain a general relation between wave
energy and phasestrophy. This relation can be applied in the BB
case to obtain a simple expression for the growth rate of a single
phase-space structure, γ	 ∼ γdγL0�v in the collisionless
limit. This expression shows that dissipation drives a nonlinear
instability of holes and clumps via momentum exchange,
regardless of linear stability. This leads to faster-than-linear
growth in barely unstable regimes, as well as to subcritical
instabilities, subject to the presence of a finite seed structure.
Simulations in both subcritical and supercritical regimes show
a good agreement with analytic theory. The extension of the
present work to multiple resonances [18] would be the logical
next step.
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