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In a collisionless plasma, it is known that linearly stable modes can be destabilized (subcritically) by the
presence of structures in phase space. However, nonlinear growth requires the presence of a seed structure
with a relatively large threshold in amplitude. We demonstrate that, in the presence of another, linearly
unstable (supercritical) mode, wave-wave coupling can provide a seed, which is significantly below the
threshold, but can still grow by (and only by) the collaboration of fluid and kinetic nonlinearities.
By modeling the subcritical mode kinetically, and the impact of the supercritical mode by simple
wave-wave coupling equations, it is shown that this new kind of subcritical instability can be triggered,
even when the frequency of the supercritical mode is rapidly sweeping. The model is applied to the bursty
onset of geodesic acoustic modes in a LHD experiment. The model recovers several key features such as
relative amplitude, time scales, and phase relations. It suggests that the strongest bursts are subcritical
instabilities, driven by this mechanism of combined fluid and kinetic nonlinearities.
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Subcritical instabilities are ubiquitous in fluids and
plasmas [1]. These include subcritical, or submarginal,
turbulence, which is self-sustained nonlinearly. Subcritical,
or submarginal, turbulence is observed in pipe flow, planar
Poiseuille flow, and planar Couette flow [2]. In magnetized
fusion plasmas, subcritical turbulence is predicted by theory
for current-diffusive interchange turbulence [3], and drift-
wave turbulence in slab geometry [4]. Subcritical excitation
also concerns large-scale perturbations, such as Kelvin-
Helmholtz instability [5,6], or the formation of self-
sustaining magnetic islands (neoclassical tearing mode) in
magnetized fusion plasmas [7].
For this wide range of subcritical systems, the subcritical

bifurcation originates from a fluid nonlinearity, or non-
linearity in real space. On the other hand, kinetic non-
linearities, or nonlinearities in the phase space of the
particle distribution, play a crucial role in hot plasmas in
general. In particular, strong wave-particle resonances lead
to the formation of structures in phase space. This is
observed in a wide range of laboratory and space plasmas
[8]. Theory predicts that these structures can lead to
subcritical instabilities, where the kinetic nonlinearity
enables the growth of a mode that is linearly damped
[9,10]. In this Letter, we report the first theoretical analysis
that interprets an experimental observation as a subcritical
instability with an essential role of kinetic nonlinearity.
We analyze an intriguing observation in the helical

plasma of the LHD, which was described in Ref. [11]
(paper 1). Chirping bursts of the energetic particle-driven
geodesic acoustic mode (EGAM) [12] are sometimes

accompanied by a stronger burst with twice the amplitude.
We call the stronger, faster burst the secondary, or daughter,
mode, and the weaker, slower (chirping) EGAM burst the
primary, or mother, mode. The daughter’s growth rate is 1
order of magnitude larger than the mother’s. The amplitude
increase of the daughter is so large (compared with the
amplitude decrease of the mother) that it clearly violates the
Manley-Rowe relations [13]. This suggests that the daugh-
ter is not excited by, e.g., simple parametric coupling.
To analyze this observation, we develop a new reduced

model, which combines the kinetic description of the
daughter mode with the nonlinear fluid coupling [14]
between the mother and daughter. This model can be seen
as an extension of the Berk-Breizman model [16]. The
model is able to qualitatively reproduce relative amplitudes,
and time scales, as well as the mother-daughter phase
relation. This analysis suggests that the daughter mode is a
subcritical instability, which is dormant until the mother
excites it by fluid nonlinearity, leveraged by kinetic non-
linearity. Neither fluid nonlinearities alone, nor kinetic
nonlinearities alone, can sustain the growth of the daughter
mode to large amplitude. Surprisingly, the mechanism
involved here is different from that described in earlier
theories [17], in that the growth occurs much below the
amplitude threshold, and without the dynamical evolution
of frequency (chirping).
Model.—In a toroidal device, the structure, linear fre-

quency, and linear growth rate of an energetic particle-
driven mode are determined by 3D calculations, and evolve
on a slow time scale of mean field evolution (∼100 ms).
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However, the kinetic nonlinear effects, which induce
chirping and subcritical instability, happen on a fast time
scale (∼1 ms) and can be treated perturbatively in a 1D
model (the Berk-Breizman model) [18]. Here, we consider
the interaction of two modes. To treat the present problem,
we split the electric field E between the two waves
E ¼ E1 þ E2, and introduce a hybrid model. The daughter
mode E1 is treated by a kinetic 1D model, and the mother
mode E2 is treated as a simple medium for nonlinear energy
transfer. For E2, we prescribe the initial amplitude Z2;0 and
time evolution of frequency ω2ðtÞ from experimental data.
We assume that the impact of the mother on the particles
near the resonant location of the daughter is negligible. The
interaction between the two waves is modeled by the
equations for period doubling.
The evolution of the energetic particle distribution

fðx; v; tÞ in the neighborhood of the resonance of the
daughter mode E1, is given by a kinetic equation [16,19]

∂f
∂t þ v

∂f
∂x þ

qE1

m
∂f
∂v ¼ ν2f

k1

∂δf
∂v þ ν3d

k21

∂2δf
∂v2 ; ð1Þ

where δf ≡ f − f0, and f0ðvÞ is the initial velocity dis-
tribution. The r.h.s. is a collision operator, where νf and νd
are input parameters characterizing dynamical friction
and velocity-space diffusion, respectively. Here, k1x cor-
responds to the poloidal angle in the perturbative expansion
from 3D to 1D.
The evolution of the two parts of the electric field is

given by

dZ1

dt
¼ −

mω3
p

4πqn0

Z
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where Ej ≡ Zj exp ½iðkjx − ωjtÞ� þ c:c:, and n0 is the total
density. The term proportional to γd is an external wave
damping, which is a model for all linear dissipative
mechanisms of the wave energy to the background
plasma [16].
Equations (2) and (3) both include a term that describes

energy exchange between the mother and daughter. The
nonlinear interaction between geodesic acoustic modes
(GAMs) (zonal flows) has been studied. Experimentally,
direct measurements indicated that GAM can drive energy
transfer in a range of frequencies higher than the GAM
frequency [20]. In theory, the dominant interaction origi-
nates either from second-order coupling between vorticity
and parallel velocity, as well as vorticity and density [21],
or via higher-order modulation mechanisms of background
turbulence [22,23]. In both cases, the coupling takes a

standard form, which depends on the coupling constant V,
and the frequency mismatch θ≡ ω2ðtÞ − 2ω1. In this
model, the linear frequency of the mode, ω1 is fixed, but
the frequency of E1 can evolve nonlinearly due to the time
evolution of Z1.
Equation (3) does not include any dissipation term (no

γd) or driving term, because we assume a balance between
external drive and external damping for simplicity. This
assumption is consistent with the time scale separation
between the evolutions of E1 and E2. The time scale of
evolution of the mother (∼10 ms) is much slower than that
of the daughter (<1 ms), as long as jZ1j < jZ2j=2.
We solve the above model with the COBBLES [24]

code. The initial velocity slope is measured by the linear
drive γL;0 ¼ ðπω3

1Þ=ð2k21n0Þ∂vf0. To simulate thermal
noise, we add to Z1 a noise term Znoiseeιϕr , where ϕr is
a phase that is randomized at each time step.
The system of Eqs. (1) and (2), in the single mode

(V → 0) limit, describes the subcritical excitation of an
isolated E1 [25]. In this case, Landau damping generates a
seed phase-space structure, whose growth rate can be
positive if the growth due to momentum exchange over-
comes the decay due to collisions [17]. This process yields
a threshold in initial, or noise, amplitude. With the above
multiple-mode model [Eqs. (1)–(3), V ≠ 0], we are able to
investigate whether a large enough seed phase-space
structure can originate from the wave energy provided
by fluid coupling with a linearly unstable mode. As we will
explain, the answer turns out to be no, but subcritical
growth can occur anyway.
Reproducing the experiment.—We concentrate on the

LHD experiment, shot #119729, at t ≈ 3.88 s. Figure 1
shows the time evolution of the magnetic perturbations
[Fig. 1(a)], and its spectrogram [Fig. 1(b)]. In Fig. 1(a), the
signal from the Mirnov coil has been filtered into a low

FIG. 1. Comparison between experiment and simulation.
(a) Low frequency (LF) and high frequency (HF) components
of the magnetic perturbation. Here, “env” refers to the envelope.
(b) Spectrogram of the magnetic perturbation. (c) Amplitudes
of modes 1 and 2 in the simulation. (d) Spectrogram of
the total field. Dashed line in (b) and (d): ω2ðtÞ used as input
in the model.
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frequency (LF, f ¼ 30–50 kHz) component for the daugh-
ter mode, and a high frequency (HF, f ¼ 60–95 kHz)
component for the mother mode. The dynamical change of
frequency of the mother mode (mode 2), around the time of
the burst of the daughter mode (mode 1), is modeled as a
linear increase. Since the spatial 3D structures of the
mother and daughter are very similar [11], we ignore
the radial inhomogeneity, and study the ratio between
the mother and daughter amplitudes of the magnetic
perturbation. To relate the electric field in the simulation
to the Mirnov coil signal, we assume a linear relationship
between j ~ϕj and j ~Bj, which is consistent with experi-
ment [12].
We scanned the parameter space (γL;0, γd, νf, νd, V). We

identified a finite region of the parameter space where the
simulation is in qualitative agreement with the experiment,
in terms of the time evolution of the amplitude of the
perturbed field. Figure 1 shows, for a typical simulation,
the time evolution of the amplitudes [Fig. 1(c)], and the
spectrogram of the total field [Fig. 1(d)]. Table I lists each
input parameter of the simulation (first and second col-
umns). In addition to the time evolution of the amplitude,
the simulation agrees qualitatively with the experiment in
the sense that the daughter mode is only very slightly
chirping (δω=ω1 < 10%, as measured by tracking pertur-
bations in the particle distribution), even though a strongly
chirping daughter mode is allowed in the model. The lack
of chirping of the daughter mode validates, a posteriori, our
assumption of fixed ω1 in the frequency mismatch θ used
for computing the wave-wave coupling terms.
Furthermore, the mother-daughter phase locking, which

was discovered in paper 1, is qualitatively captured by
numerical simulations. Figure 2 shows the Lissajous curve
during the growth and decay phases, for the experiment
[Figs. 2(a) and 2(b)] and for the simulation [Figs. 2(c) and
2(d)] [27]. The mother-daughter phase relation locks itself
during the growth phase and the decay phase of the
daughter.
Therefore, we have shown that our model is able to

qualitatively reproduce the nonlinear evolution of the
daughter, in terms of amplitudes, time scales, and phase

locking. Note that we use a simple 1D model that was
designed to reproduce qualitatively the excitation mecha-
nism of the daughter. We do not pretend to recover
quantitatively from first principles the features of the child,
or to reproduce the combined evolution of both the mother
and daughter, but rather show the possibility of a new
mechanism as follows.
Collaborative fluid-kinetic nonlinearity.—Here, we

briefly describe the essence of the combined dynamics
of two kinds of nonlinear mechanisms. A first crucial point
is that, in the limit V ¼ 0, there is no subcritical instability
unless we apply an artificially large initial perturbation
Z1;0 ∼ Z0. Therefore, single-mode kinetic nonlinearity
alone is insufficient. A second crucial point is that if we
remove the kinetic part, that is, the first term of the r.h.s. of
Eq. (2), then the amplitude of the daughter stays negligible
compared to the amplitude of the mother. Therefore, fluid
nonlinearity alone is also insufficient. It is the combination
of fluid and kinetic nonlinearities that allows significant
subcritical instability. This new hybrid fluid-kinetic sub-
critical instability is illustrated in Fig. 3, which compares
the stability of the daughter without [Fig. 3(a)] and with
[Fig. 3(b)] the kinetic term in Eq. (2). The unstable region
(max jZ1j=Z2;0 ∼ 1) is significantly extended to lower V in
the parameter space of (−γ, V). Here, −γ ¼ γd − γL;0 is
used as a measure of the distance from linear marginal
stability.
In previous works [17,24,25], the kinetic subcritical

instability was due to the growth of phase-space structures,
and thus linked to chirping. Here, chirping does not occur
during daughter growth (there is slight chirping, but during
daughter decay), consistently with the relatively large
νd ∼ γL;0 [28]. In fact, the peak amplitude jZ1j produced
by fluid coupling alone is orders of magnitude below the
predicted amplitude threshold for subcritical growth. These
observations suggest that the mechanism is different from
the previously known kinetic subcritical instability.

FIG. 2. Lissajous figure during the growth (a) and the decay
(b) of the daughter mode in the experiment, and
(c),(d) in the simulation. For the simulation, ~Zi ≡ Zie−ιωit. The
timing is shown by gray rectangles in Fig. 1. Color bars show the
time shifted by t0 ¼ 3.879 s.

TABLE I. Input parameters of the model. Here, Z0 is an
arbitrary normalizing factor.

Parameter Value Range Independent estimation

γL;0=ω1 0.03 0.01–0.08 0.1 is supercritical [26]
γd=γL;0 − 1 0.03 0.01–0.7 γL ≈ γd hypothesis
νf=γL;0 0.067 0.003–0.3 Fokker-Planck, 0.068
νd=γL;0 0.53 0.3–1.5 Fokker-Planck, 0.44

VZ0=ω2
1

50 40–80 ∼10−2–102 [23]

Znoise=Z2;0 0.06 10−4–0.3
Input from experimental data103Z2;0=Z0 1 0.6–2.0

ω−2
1 dω2=dt 5×10−4 10−4–10−3
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Let us give more details about the new mechanism. It is
convenient to describe the three terms in the r.h.s. of Eq. (2)
as kinetic, dissipative, and coupling terms, respectively.
During the daughter growth, the dissipative and coupling
terms are nearly locked in antiphase (1.2π–1.3π phase
difference). Therefore, the coupling acts as an effective
reduction of dissipation. The kinetic term is in phase with
the dissipative term. In amplitude, all three terms are
comparable. Therefore, the sum of the three terms approx-
imately results in a real, positive growth rate ∼γd ∼ γL;0.
Impact of input parameters.—The model includes

a priori eight input parameters (assuming a constant
chirping rate dθ=dt for the mother mode at the onset of
the daughter mode). Here, we describe the sensitivity, and
the experimental and theoretical basis, for these parameters.
We have conducted a sensitivity analysis, where we vary

each input parameter, everything else being equal, and
measure the impact on the time evolution of the daughter
mode. The third column (Range) of Table I lists for each
parameter the range (everything else being equal) where the
simulation qualitatively agrees with the experiment. Note
that the evolution of the daughter mode is mostly sensitive
to γL;0, νd, V, Z2;0, and dω2=dt.
The fourth column of Table I lists estimations from

independent methods when available. Two of the five
sensitive parameters, Z2;0, dω2=dt, as well as Znoise, are
inputs from experimental data. Another sensitive param-
eter, νd, as well as νf, can be obtained from experimental
measurements, after projecting the Fokker-Planck collision
operator on the resonance surface of the daughter [29,30],
including the significant impact of impurities [19]. We use
the local plasma parameters around the radial location of
the daughter as given in paper 1, and a magnetic shear
S ≈ 0.2. In addition, we assume carbon impurities with
TC ¼ Ti and Zeff ¼ 2. We obtain νf=γL;0 ≈ 0.068 and
νd=γL;0 ≈ 0.44, which are 1% and 17%, respectively, below
the parameters of the simulation shown in Fig. 1.
There remain two parameters with significant impacts:

(1) the slope of the energetic particle distribution, para-
metrized by γL;0, and (2) the coupling coefficient V. For (1),

it was shown that the order of magnitude γL;0=ω1 ∼ 0.1 is
relevant for linearly unstable EGAMs on similar LHD
plasmas [26], which suggests that 0.03 is relevant for
linearly stable EGAMs. For (2), substituting the parameters
of the experiment into Eq. (35) of Ref. [23] yields an
estimate Z0V=ω2

1 ∼ 10−2–102. The result is sensitive to the
radial wave number of the GAM, but not inconsistent with
our simulation. Thus, V is a key parameter, with a finite
range that reproduces the experiment, but with a poor
theoretical guide. Therefore, the quantitative deduction of
V from the first principles is encouraged.
The model provides the following predictions, which are

open to future experimental tests. (1). The ratio between
the mother and the daughter mode can become much
larger, jZ1j=jZ2j > 2, if the daughter mode exhibits strong
chirping, Δω1 ∼ ω1 (see the discussion below). (2). Since
the best limit for driving a subcritical instability is
dω2=dt → 0, and in this case we observed no nonlinear
instability for γd > 2γL;0, we predict that there will not
appear any subcritical instability with γd ≫ γL;0.
Summary.—We have shown that the model can repro-

duce key aspects of the experimental observation of
paper 1. It interprets the daughter mode as a manifestation
of a subcritical instability, driven by the cooperative
combination of fluid nonlinearity and kinetic nonlinearity.
In contrast with previously known kinetic subcritical
instabilities, the amplitude stays below the kinetic thresh-
old, and the chirping of the present fluid-kinetic hybrid
subcritical instability seems to be limited by a quasi-phase-
matching condition with the mother mode. These results
imply a new channel of mode excitation, which modifies
the flow of energy in the system.
Discussion.—The model underlies a broader phenom-

enology. By varying the input parameters, it leads to other
kinds of nonlinear evolution of both the daughter and the
mother mode. In particular, if the ratio νf=νd increases,
the amplitude threshold for pure kinetic instability signifi-
cantly decreases. For νf=νd ∼ 1, the mother mode can push
the daughter mode over the threshold, then the daughter
chirps strongly. In this case, the role of the mother is
reduced to that of an initial trigger, and the daughter’s
amplitude can grow an order of magnitude above the
mother’s amplitude. This may turn out to be a significant
issue in the International Thermonuclear Experimental
Reactor (ITER), where νf=νd is predicted to be above
unity [30], in contrast to currently operating devices.
In our analysis, we have prescribed the time evolution of

the mother frequency ω2ðtÞ with a constant chirping rate.
As a caveat, this prescribed evolution ends when
jZ1j ∼ jZ2j. Indeed, in the experiment, the ratio ω2=ω1

increases very rapidly, but almost linearly, from 1.9 to 2.0,
within a 0.2 ms span during the daughter growth. The
model, by its design, is unable to recover this apparent
synchronization mechanism. However, the ratio of 2.0 is
not reached before the very end of the daughter growth.

FIG. 3. Nonlinear stability diagram for the daughter mode
without (a) and with (b) the kinetic term in Eq. (2). Peak
amplitude of the daughter mode as a function of distance from
linear stability and the coupling coefficient. The white area is the
stability threshold.
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This indicates that the synchronization may not be a key
aspect of the instability mechanism, although it may be a
key aspect of the full dynamics of coupled modes.
Reproducing the self-consistent coupled evolution of both
the mother and daughter is a relevant challenge that we
leave for future work. Here, we focused on the origin of the
subcritical, daughter mode.
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