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In the presence of an energetic particle population in a dissipative plasma, self-trapped structures in

phase-space (holes and clumps) emerge from nonlinear wave-particle interactions. Their dynamics

can lead to a nonlinear continuous shifting of the wave frequency (chirping). The effects of

collisions on chirping characteristics are investigated, with a one-dimensional kinetic model.

Existing analytic theory is extended to account for Krook-like collisions, which quantitatively

explains a significant departure from widely accepted square-root time dependency. Relaxation

oscillations, associated with chirping bursts, are investigated in the presence of dynamical friction

and velocity-diffusion. The period increases with decreasing drag and weakly increases with

decreasing diffusion. The mechanism is clarified with a simple semi-analytic model of hole/clump

pair, which satisfies a Fokker-Planck equation. The model shows that the linear growth rate cannot be

obtained simply by fitting an exponential to the amplitude time-series. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4804644]

I. INTRODUCTION

In an ignited tokamak, the confinement of a-particles is

critical to prevent damages on the first-wall and to achieve

break-even. A major concern is that high energy ions can

excite plasma instabilities in the frequency range of Alfv�en

Eigenmodes (AEs), which significantly enhance their trans-

port. In general, these instabilities are described in a three-

dimensional (3D) configuration space. However, near the

resonant surface, it is possible to obtain a new set of varia-

bles in which the plasma is described by a one-dimensional

(1D) Hamiltonian in 2 conjugated variables,1–4 if we assume

an isolated single resonance. In this sense, the problem of

AEs is homothetic to a simple 1D single mode bump-on-tail

instability. The Berk-Breizman (BB) problem1,2,5 is a gener-

alization of the bump-on-tail problem, where a damping

term is added in the wave equation with a rate cd, to account

for background dissipative mechanisms. Observed quantita-

tive similarities between BB nonlinear theory and both

global TAE simulations3,6 and experiments7–9 are an indica-

tion of the validity of this reduction of dimensionality.

A feature of the nonlinear evolution of AEs, the fre-

quency sweeping (chirping) of the resonant frequency by

10%–30% on a timescale much faster than the equilibrium

evolution, has been observed in the plasma core region of

tokamaks JT-60U,10 DIII-D,11 the Small Tight Aspect Ratio

Tokamak (START),12 the mega amp spherical tokamak

(MAST),6 the National Spherical Torus Experiment

(NSTX),13 and in stellerators such as the Compact Helical

Stellerator (CHS).14 In general, two branches coexist, with

their frequency sweeping downwardly (down-chirping) for

one, upwardly (up-chirping) for the other. In most of the

experiments, relaxation oscillations are observed, with quasi-

periodical chirping bursts. The period is in the order of the

millisecond. Chirping bursts are associated with significant

transport of energetic particles, in particular when they trig-

ger avalanches.15 This motivates our investigation of the pe-

riod of chirping bursts.

Qualitatively similar chirping modes are spontaneously

generated in the BB model. Existing theory predicts the time

evolution of the frequency shift as dx �
ffiffi
t
p

.16 In this work,

we extend the latter theory by accounting for Krook-like colli-

sions with frequency �a, which yields dx �
ffiffi
t
p
ð1� �at=3Þ.

Relaxation oscillations were predicted when collision

frequency is small compared to damping rate.17 When colli-

sional velocity-space diffusion is small but finite, they were

observed in simulations, associated with chirping bursts.18

Here, we consider the experimentally relevant regime where

these pulsations are quasi-periodic. We clarify the mecha-

nism of relaxation oscillation. We show that the period is

mainly dictated by dynamical friction and velocity-space dif-

fusion. Between two bursts, the wave amplitude is low, and

collisions dominate over the nonlinear term in the kinetic

equation. By modeling a hole and a clump in the velocity

distribution by two Gaussians, their dynamics is obtained as

the analytic solution of a Fokker-Planck equation, given an

initial fit of the structures just after a burst. We obtain a good

agreement between analytic prediction and numerical simu-

lation for the hole/clump width, amplitude, and shift. The in-

stantaneous quasi-linear growth rate is then obtained

numerically by solving a linear equation system. This proce-

dure recovers time-evolution of amplitude growth and leads

to a better qualitative understanding of the nonlinear evolu-

tion of wave amplitude between bursts. In addition, our

theory explains why the growth rate of the first burst, which

is equal to the linear growth rate, is different from (in our

simulation, twice larger than) the growth rate of subsequent

bursts.

a)Paper TI2 4, Bull. Am. Phys. Soc. 57, 292 (2012).
b)Invited speaker. Electronic mail: maxime.lesur@polytechnique.org
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II. MODEL

A. Beam model

We assume a single electrostatic wave, with a wave

number k. The assumption that the electric field is sinusoidal

corresponds to the situation of a single resonance, which is

selected by the geometry in more complex systems.19,20 It is

appropriate to normalize time to the plasma frequency xp,

distance to the wave number k, density to the total plasma

density n0, and electric field to mx2
p=ðekÞ, where e and m are

the particle charge and mass and x2
p � n0e2=ð�0mÞ.

We adopt a perturbative approach and cast the BB

model in a reduced form, which describes the time evolution

of the beam particles only.21 The main hypothesis in this

approach is that the bulk particles interact adiabatically with

the wave, so that their contribution to the Lagrangian can be

expressed as a part of the electric field. In this model, the lin-

ear frequency of the wave is imposed as x0 ¼ xp. This

implies that in practice, time is normalized to the linear fre-

quency of the wave (without nonlinear modification). Even

when chirping occurs, x0 does not change. Chirping (exis-

tence of a significant spectral component at finite dx
� x� x0) is due to the nonlinear evolution of the amplitude

and phase of the wave. The evolution of the beam distribu-

tion, f(x, v, t), is given by a kinetic equation,

@f

@t
þ v

@f

@x
þ ~E

@f

@v
¼ Cðdf Þ; (1)

where Cðdf Þ is a collision operator described below, f0ðvÞ is

the initial velocity distribution, df � f � f0, and the pseudo-

electric field ~E is defined as

~Eðx; tÞ � QðtÞ cosðx� tÞ � PðtÞ sinðx� tÞ: (2)

The evolution of the pseudo-electric field is given by

dQ

dt
¼ � 1

2p

ð
f ðx; v; tÞ cosðx� tÞ dx dv� cd Q; (3)

dP

dt
¼ þ 1

2p

ð
f ðx; v; tÞ sinðx� tÞ dx dv� cd P: (4)

The term proportional to cd is an external wave damping,

which is a model for all linear dissipative mechanisms of

the wave energy to the background plasma.21 Eqs. (3) and

(4) are designed so that dW=dt ¼ Ph � 2cdW, where

W ¼ ðQ2 þ P2Þ=2 is the total wave energy, including slosh-

ing energy, and Ph is the power the energetic particles trans-

fer to the wave. The bounce frequency of particles deeply

trapped into the potential well, xb ¼ ðQ2 þ P2Þ1=4
, can be

used as a measure of the field amplitude.

We define cL0 as a measure of the slope of f0 at the reso-

nant velocity,

cL0 �
p
2

@f0

@v

����
v¼1

: (5)

In the collisionless limit, when c� x0, the linear growth rate

reduces to c ¼ cL0 � cd. In the initial condition we apply a

small perturbation, f ðx; v; t ¼ 0Þ ¼ f0ðvÞð1þ �cos kxÞ, and the

initial values of Q and P are given by solving Poisson’s

equation.

We consider two collision models. On the one hand, a

large part of existing theory takes into account collisions in

the form of a Krook operator,22

CKðdf Þ ¼ ��aðdf Þ; (6)

which is a simple model for collisional processes that tend to

recover the initial distribution at a rate �a, including both

source and sink of energetic particles. On the other hand, a

more realistic collision operator, the one-dimensional projec-

tion of a Fokker-Plank operator,9,23 includes a dynamical

friction (drag) term and a velocity-space diffusion term,

CFPðdf Þ ¼ �2
f

@ðdf Þ
@v
þ �3

d

@2ðdf Þ
@v2

: (7)

We refer to the above reduced model as the df BB

model. Compared to the full-f model studied in Ref. 24, the

df model does not take into account effects of the time-

evolution of the bulk particle velocity distribution, which are

irrelevant to the study of AEs. This assumption is justified by

the orders-of-magnitude difference in time-scale between the

energetic particle evolution and the evolution of bulk plasma

parameters and profiles. In addition, the df model assumes a

constant total number of energetic particles and a sine wave

structure.

B. Numerical simulation

In Ref. 24, we described the kinetic code COBBLES

(COnservative Berk-Breizman semi-Lagrangian Extended

Solver), capable of long-time simulations of the df BB

model with a Krook collision operator. In Ref. 18,

COBBLES was extended to include drag and diffusion in the

collision operator.

Hereafter, the initial velocity distribution f0 is designed

with a constant slope in the region where phase-space struc-

tures evolve (in a neighborhood of the resonant velocity

v¼ 1). We arbitrarily choose

pf0

2cL0

¼

�exp r2 � v

0:1
þ r

� �2
� �

if v < 0

v� 1 if 0 � v � 2

þexp r2 � v� 2

0:1
þ r

� 	2
" #

if v > 2;

8>>>>><
>>>>>:

(8)

with r ¼ 0:05.

III. EFFECT OF KROOK COLLISION ON CHIRPING
VELOCITY

Ref. 16 shows how one can isolate one spectral compo-

nent and model it by a Bernstein-Green-Kruskal (BGK)

wave to obtain the time-evolution of one chirping event.

This theory is based on the following assumptions:

• The resonant velocity of a hole/clump evolves slowly

enough for trapped particle orbits to keep their coherency,
_dx=x2

b;
€dx=x3

b � 1;
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• The width of a hole/clump evolves slowly enough for

trapped particle orbits to keep their coherency,

_xb=x2
b � 1;

• Holes and clumps are narrow enough that they do not

overlay each others, xb=dx� 1.

With the above assumptions, the perturbation of pass-

ing particle distribution is negligible, and a bounce-average

treatment of trapped particle distribution yields the fre-

quency shift, in the collisionless limit, as

dxðtÞ ¼ ab cL0

ffiffiffiffiffiffiffi
cd t
p

; (9)

with a � 0:44; b ¼ 1; and a saturation level as

xb � 0:54 cL0: (10)

In Ref. 16, Eq. (9) is derived by changing variables to

action-angle of the bounce-motion of particles trapped in a

hole or a clump, and by noting that the unperturbed part

f0ðxÞ of f does not contribute to the resonant energy

exchange. Thus, the wave equation involves only the devia-

tion from the unperturbed distribution at the center of the

evolving hole/clump, g � f � f0ðx0 þ dxÞ. Then, g is

expanded in powers of �,

g ¼ g0 þ �g1 þ… (11)

where � � maxð €dx=x3
b; _xb=x2

b;xb=dxÞ � 1, and it is

shown that to zeroth order in �, the real and imaginary parts

of the wave equation are reduced to

cd ¼ �
2cL0

px2
b@xf0ðx0Þ

ðJmax

0

_dx
x2

b

g0 dJ; (12)

dx ¼ � 2cL0

px2
b@xf0ðx0Þ

ðJmax

0

hcoswig0 dJ; (13)

where angle brackets indicates a bounce-average, w is the

spatial coordinate in a frame moving with the hole/clump, J
is the bounce-motion action, Jmax ¼ 8xb=p, and g0 is

obtained by bounce-averaging the kinetic equation. Then, in

the reference, the collisionless limit is consider, in which

case g0 is simply

g0ðtÞ ¼ f0ðx0Þ � f0ðx0 þ dxÞ: (14)

Eq. (9) follows by assuming a constant gradient for f0.

The above theory is valid on a timescale smaller than a

collision time. Fig. 1 shows a typical time-evolution of elec-

tric field amplitude in the chirping regime (for reference).

Fig. 2 shows the corresponding spectrogram of the electric

field. Note that the vertical axis is the square of dx. It is clear

from this figure that the chirping branches do not follow any

square-root law. We test above and following theories on the

first chirping branch, since after the first chirping burst, the

velocity distribution is modified and the assumption of a con-

stant velocity slope is broken.

In Eq. (9), we introduced a correction parameter b to

account for all effects that are due to the departure from adia-

batic conditions.9 One of these effects is the collision-

induced trapping of particles near the separatrix,26 which was

observed to account for a 10% modification (b ¼ 1:1). The

numerical investigation of b in Ref. 9 is also limited

to a timescale smaller than a collision time. Here the value of

b ¼ 1:23 is obtained by linear fit of dx2ðtÞ for dx=x0 < 10%.

In the following, we include the effect of finite colli-

sions, to explain a deviation from square-root law in longer

timescales. Lilley described the effect of drag and diffusion

in Ref. 27. In this paper, we consider the case where colli-

sions are modeled by a Krook operator. This was first done

in Ref. 28 in less details. Then, the bounce-averaged kinetic

equation for g at lowest order is

@g0

@t
þ �ag0 ¼ �

@f0
@t
: (15)

The solution is

g0ðtÞ ¼ e��atf0ðx0Þ � f0ðx0 þ dxÞ

þ �a

ðt

0

f0½x0 þ dxðt0Þ�e�aðt0�tÞ dt0: (16)

FIG. 1. Time-evolution of the electric field amplitude in df -COBBLES simu-

lation with cL0 ¼ 0:05; cd ¼ 0:045; �a ¼ 4	 10�5; Nx 	 Nv ¼ 128	 4096

grid points, and time-step width Dt ¼ 0:05.

FIG. 2. Effect of finite Krook collisions on chirping velocity. Spectrogram

of the electric field, for the simulation shown in Fig. 1. Logarithmic color

code ranging from 1 (black) to 10–3 (white). Two dotted, straight lines corre-

spond to Eq. (9). Two solid curves correspond to Eq. (21). We include a cor-

rection coefficient b ¼ 1:23. Two dashed curves correspond to Ref. 25.

Inset: zoom on the beginning of the first chirping event.
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Again, we assume a constant gradient for f0,

f0½x0 þ dxðtÞ� ¼ f0ðx0Þ þ f 00ðx0Þ dxðtÞ; (17)

which yields

g0ðtÞ ¼ f 00ðx0Þ �a

ðt

0

e�aðt0�tÞdxðt0Þ dt0 � dxðtÞ
� �

: (18)

We substitute the latter solution into Eqs. (12)–(13) to find,

in the limit _dx=x2
b � 1,

cd

dx
¼ 3

_dx

x2
b

; (19)

3p2xbðtÞ
16cL0

¼ 1� �a

dxðtÞ

ðt

0

e�aðt0�tÞdxðt0Þ dt0: (20)

We solve the latter equation system by expanding both xb

and dx in powers of �at. This lengthy but straightforward

procedure yields

dxðtÞ ¼ 6a b cL0

ffiffiffiffiffiffi
cdt
p

1 � 1

3
ð�atÞ þ 7

90
ð�atÞ2

�

� 19

1890
ð�atÞ3 þ 1507

1701000
ð�atÞ4 þ …

�
; (21)

xbðtÞ ¼
16cL0

3p2
1 � 2

3
ð�atÞ þ 8

45
ð�atÞ2

�

� 8

315
ð�atÞ3 þ 152

42525
ð�atÞ4 þ …

�
: (22)

Note that Eqs. (9)–(10) are recovered in the collisionless

limit. The effect of finite collision is to reduce the extent of

chirping by bending shifting branches. This effect is not neg-

ligible since dx is reduced by 27% after a collision time,

which is of the order of chirping lifetime. Fig. 2 shows a

good agreement between Eq. (21) and the observed bended

chirping.

In Ref. 25, a top-hat model for holes and clumps was

applied to obtain the adiabatic evolution of these idealized

structures in the form of two coupled ordinary differential

equations for dx and the structure height hðtÞ
� df=ðx0dvf0Þ. In the present case of a linear velocity distri-

bution and with our normalization, the system reduces to

dh

dt
¼ ��ah� ð1þ dx=x0Þ2h2Q; (23)

1

x0

ddx
dt
¼ ð1þ dx=x0Þ2h2Q; (24)

QðdxÞ ¼ 64

27p
M1ðdxÞ
M2ðdxÞ cdc

2
L0; (25)

M1ðdxÞ ¼ 1

2
þ 11sin 4g

24g
þ 8cos2g� 3sin 2g

2g

� 	2

� 2sin 2g
3g

;

(26)

M2ðdxÞ ¼ cos 3gðsing� gcosgÞ; (27)

where g ¼ p=ð2þ 2dxÞ. The initial condition (at t¼ 0) is

dx ¼ � and h ¼ ��=x0. Two solutions, which correspond to

positive or negative �, with � ¼ 10�3, are plotted as dashed

curves in Fig. 2 for comparison (without any correction coef-

ficient). The agreement with simulation is not as good as

with our theory, especially for the clump. However, our

model assumes a sinusoidal mode structure, in contrast with

the reference, where the mode structure evolves self-

consistently. To check if the discrepancy is due to this

assumption, we run a simulation of the full-f BB model,

which is described for example in Ref. 24. In this model,

both thermal and beam components of the distribution are

evolved kinetically, and nothing is assumed for the mode

structure. We design the velocity distribution such that it has

a constant slope for 0:5 < v < 1:95, with cL0 ¼ 0:05. The

thermal component is a Maxwellian with a thermal velocity

0.1 and density 0:95n0. Fig. 3 shows the spectrogram of the

electric field. For the down-chirping branch, Nyqvist’s

theory is, as expected, in better agreement than our sine-

structure theory. Nevertheless, there is a significant 50% dis-

crepancy after one collision time (�at ¼ 1), which remains to

be accounted for. For the up-chirping branch, the theory of

Ref. 25 is in qualitative disagreement with the model, since

the correction from the
ffiffi
t
p

law is in the opposite direction.

This disagreement may be due to clump-clump interactions,

which are not accounted for in Nyqvist’s theory. Indeed

down-chirping clumps do not seem to separate well from

each others, and their long-range evolution seems to be

affected.

IV. EFFECT OF DRAG AND DIFFUSION ON CHIRPING
PERIOD

A regime of quasi-periodic chirping bursts was discov-

ered in Ref. 9 and shown to be relevant to toroidal Alfv�en

eigenmodes in tokamaks. This regime appears when the

FIG. 3. Effect of finite Krook collisions on chirping velocity, when the

mode structure is evolving. Spectrogram of the electric field, for a full-f sim-

ulation. Although the model is different, the parameters are the same as for

Figs. 1 and 2. Two dotted curves correspond to Eq. (9). Two solid curves

correspond to Eq. (21). We include a correction coefficient b ¼ 1:23. Two

dashed curves correspond to Ref. 25.
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drag/diffusion collision operator is applied, for �f � �d

� cL0 and cd � cL0=2. In this section, we focus on the chirp-

ing period Dtchirp, which is defined as the average time

between two bursts.

Throughout this section, simulation parameters are

cL0 ¼ 0:1; cd ¼ 0:05; Nx 	 Nv ¼ 128	 2048 grid points,

time-step width Dt ¼ 0:05. The collision frequencies vary,

but we choose a reference case as �f ¼ 0:008 and

�d ¼ 0:025. Fig. 4 shows the time-evolution of electric field

amplitude for three quasi-periodic chirping with three values

of drag, as well as the spectrogram for the reference case,

illustrating the quasi-periodic chirping regime. As �f

increases, Dtchirp decreases. Fig. 5 shows three values of �d.

As �d increases, Dtchirp decreases.

The dependency of chirping period on the model param-

eters (cL0; cd; �f , and �d) is complex and lack theoretical

analysis. In the following, we estimate the effects of �f

and �d.

A. Gaussian model

Dupree showed that a phase-space density hole corre-

sponds to a state of maximum entropy, and that this state is a

BGK mode, with df � exp� H=H0, where H is the energy

in the rest-frame of the hole and H0 is a constant.29 In the

periodic chirping regime, the phase-space is dominated by a

single hole and a single clump for most of the duration of a

chirping burst (except at the very beginning of a burst), as

hinted by the observation of a single downwardly shifting

branch and a single upwardly shifting branch for each burst

in Fig. 4(b). Then the spatial average of the perturbed distri-

bution can be reasonably modeled by two Gaussian

distributions,

hdf iðv; tÞ ¼ lcexp � v� vR þ vc

Dvc

� 	2
" #

� lhexp � v� vR � vh

Dvh

� 	2
" #

; (28)

where lc, lh, vc, vh, Dvc, and Dvh are positive functions of

time, and the subscripts c and h denote the clump and the

hole, respectively. Fig. 6 shows the perturbed velocity distri-

bution for the reference case, at cL0t ¼ 100, where

xb=cL0 � 0:1. The model is a good fit for the simulation in

this particular snapshot. The agreement is typically better for

lower amplitudes or just before a burst; worst for higher

amplitudes or during and just after a burst.

When the field amplitude is small enough, the collision

operator dominates over the nonlinearity ~E@vf in Eq. (1). Then

the velocity distribution satisfies a Fokker-Planck equation,

@hdf i
@t
¼ �2

f

@hdf i
@v
þ �3

d

@2hdf i
@v2

: (29)

FIG. 4. Effect of drag in the periodic chirping regime. (a) Time-evolution of

the electric field amplitude for �d ¼ 0:025 and �f shown in the legend. (b)

Spectrogram of the electric field, for �f ¼ 0:008. Logarithmic color code

ranging from 1 (black) to e�3 (white).

FIG. 5. Effect of diffusion in the periodic chirping regime. Time-evolution

of the electric field amplitude for �f ¼ 0:008 and �d shown in the legend.

FIG. 6. Perturbed velocity distribution for �f ¼ 0:008; �d ¼ 0:025, at

cL0t ¼ 100, and fit, Eq. (28), with lc ¼ 3:20	 10�3; lh ¼ 3:23	 10�3;
vc ¼ 0:203; vh ¼ 0:115; Dvc ¼ 0:215, and Dvh ¼ 0:213. The difference

between the numerical distribution and the fit is amplified 500 times.
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The form of the hole/clump pair is unchanged, and the time-

evolution is solved analytically,

lcðtÞ ¼
Dvcðt0Þ
DvcðtÞ

lcðt0Þ; (30)

lhðtÞ ¼
Dvhðt0Þ
DvhðtÞ

lhðt0Þ; (31)

vcðtÞ ¼ vcðt0Þ þ �2
f ðt� t0Þ; (32)

vhðtÞ ¼ vhðt0Þ � �2
f ðt� t0Þ; (33)

DvcðtÞ2 ¼ 4�3
d ðt� t0Þ þ Dvcðt0Þ2; (34)

DvhðtÞ2 ¼ 4�3
d ðt� t0Þ þ Dvhðt0Þ2: (35)

Fig. 7 shows the evolution of the hole/clump pair char-

acteristics. We adopt a least-square fit of the hole/clump pair

in the simulation at t ¼ t0. We arbitrarily choose cL0t0 ¼ 100

and confirm that the theory is in good agreement with simu-

lation for 40 < cL0t < 120. Similar results are found for vari-

ous simulation parameters and various choices of t0.

Observed deviations from a Gaussian distribution do not

have qualitative impacts on the evolution of amplitude, shift

or width. This justifies that we use the Gaussian model to

demonstrate following qualitative statements without lack of

generality.

For the sake of explanations, we separate two phases. In

the bursting phase, which immediately follows the amplitude

saturation, the dynamics is dominated by hole/clump forma-

tion. The hole (clump) is rapidly growing and rapidly accel-

erating (decelerating). Two examples for the reference case

are 20 < cL0t < 30 and 120 < cL0t < 140. This phase appears

as strong bursts of activity in the spectrogram, Fig. 4(b). In the

quiescent phase, the dynamics is dominated by the evolution

of one hole and one clump under the effect of dynamical drag

and velocity-diffusion. Both hole and clump are slowly decay-

ing and slowly decelerating (for finite �f ). Two examples for

the reference case are 40 < cL0t < 120 and 140 < cL0t
< 180. This phase appears as a quiescent period in the spec-

trogram. Although we consider two phases for the sake of the

explanations below, there is, in fact, no clear separation

between these two phases. It should be kept in mind that

velocity-diffusion is necessary for the quiescent phase to exist,

as was shown in Ref. 9. When collision frequencies are large

enough, the initial distribution recovers before the end of the

bursting phase, in other word there is no quiescent phase and

we leave the periodic chirping regime.

B. Quasi-linear growth rate

The quasi-linear growth rate is obtained here by using at

each instant the Gaussian model of hole/clump pair for the

relaxing velocity distribution, and substituting it into the lin-

earized model equations. As a preliminary step to the analy-

sis below, we show that this quasi-linear growth rate

reproduces the instantaneous growth rate of wave amplitude

measured directly in simulations. To obtain the linear growth

rate, we search for solutions of the form expðptÞ, where

p � c� ix. Writing fkðv; tÞ ¼ fpðvÞept the Fourier compo-

nents of df , and expð�itÞ ðQþ iPÞ ¼ Zpept, we obtain a lin-

ear equation system,

ðp þ ivÞfp þ
Zp

2

@f0

@v
¼ �2

f

@fp

@v
þ �3

d

@2fp

@v2
; (36)

ðp þ cd þ iÞZp ¼ �
ð

fp dv: (37)

Discretizing the velocity space as vj ¼ jDv for j ¼ 1 
 
 
Nv,

the latter system is approximated to first order accuracy

in Dv,

ðp þ ivjÞfj þ
Zp

2

@f0
@v
ðvjÞ ¼

�2
f

2Dv
ðfjþ1 � fj�1Þ

þ �3
d

Dv2
ðfjþ1 � 2fj þ fj�1Þ; (38)

ðp þ cd þ iÞZp ¼ �Dv
XNv

j¼1

fj; (39)

where fj � fpðvjÞ and boundary conditions are

f0 ¼ fNvþ1 ¼ 0. This system of Nv þ 1 equations is put in the

form of an eigenvalue problem and solved using Lapack

library. For our reference case in the absence of holes and

clumps (lc ¼ lh ¼ 0), we obtain x ¼ 1:000 and c ¼ 0:04476.

In the presence of holes and clumps, we denote the growth

rate as cQL, indicating that we use the velocity distribution

that results from nonlinear calculations.

From the amplitude time-series of the numerical simula-

tion, we extract the instantaneous growth rate cNL, defined as

Eðt2Þ ¼ Eðt1Þexp½cNLðt2 � t1Þ�, where cL0ðt2 � t1Þ ¼ 4.

FIG. 7. Time-evolution of hole and clump characteristics, for our reference

case (�f ¼ 0:008; �d ¼ 0:025). (a) Amplitude lh and lc. (b) Shift vh and vc.

(c) Width Dvh and Dvc. The dashed curves correspond to Eqs. (30)–(35),

with cL0t0 ¼ 100.
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Fig. 8 shows that the quasi-linear growth rate obtained from

the eigenvalue problem with the Gaussian model for hole

and clump is in good agreement with the nonlinear growth

rate extracted from the simulation. We could easily go one

step further, and use the numerical velocity distribution

itself, retrieved from numerical simulations, without model-

ing it. We would get even better agreement between the

quasi-linear and the nonlinear growth rate. However, the

goal here is to clarify hole/clump dynamics. To reach this

goal, it is necessary to keep models as simple and analytic as

reasonably possible.

Here we make an important remark. Fig. 7(a) shows that

the second burst occurs before the remnant hole-clump pair

from the first burst is completely dissipated. Since the initial

distribution function is not recovered, there is a discrepancy

between the linear growth rate c ¼ 0:04476 and the maxi-

mum growth reached before the second burst at

cL0t ¼ 122; cNL ¼ 0:024. This discrepancy is marked (A) in

Fig. 8. In Alfv�en wave experiments in magnetic confinement

devices, the amplitude time-series of magnetic perturbation

looks as though the linear growth rate c can be extracted by

fitting an exponential to the signal. Our analysis shows that

this procedure, which is used in data analysis (e.g., Ref. 30),

can lead to large error (50% in our case). In other words the

growth is not linear in the case of quasi-periodic chirping

bursts. For the same reason, successive chirping rates may

not reflect the relaxed distribution (f0ðvÞ in the collision oper-

ator Cðf � f 0Þ), but the instantaneous state of the relaxing

distribution (f(x, v, t)). In addition, since the discrepancy (A)

depends on the details of the velocity distribution, theory

predicts the timing of the subsequent burst (e.g., at

cL0t � 125), but only qualitatively.

C. Effect of drag

The effect of drag on chirping period is complex and

depends on other parameters. Fig. 9 shows the period as a

function of drag, for two fixed values of diffusion. The data

points are shown only for simulations categorized as periodic

chirping, by the categorization algorithm developed in Ref.

18. We observe that, when the period is large, the general

trend is a decreasing period as drag increasing. The trend is

reversed when the period is small.

To understand this complex behavior, we need to take

into account the effect of drag on both bursting phase and

quiescent phase. In the bursting phase, drag lengthens the

lifetime of the hole by deepening it.27 On the one hand,

when the bursting phase is significantly shorter than the

whole period, this is not a significant effect, as can be seen in

Fig. 4(a). Thus the effect of �f on chirping period is

explained by the effect on the quiescent period. From Eqs.

(30)–(35), it is clear that the only effect of drag during the

quiescent period is to shift holes and clumps to smaller

velocities. After one chirping burst, both hole and clump are

roughly shifted by a same amount, here vc0 ¼ vh0 ¼ 0:16 at

cL0t ¼ 30, which is the extent of chirping. Fig. 10 shows the

nonlinear growth rate against the shift vc � vc0 ¼ vh0 � vh,

FIG. 8. Time-evolution of the growth rate in our reference case. Points:

obtained from the time-series of electric field amplitude (Fig. 5, dashed

curve). Dashed curve: obtained from the linearized equations and the

Gaussian model for @hf i=@v. In the absence of hole and clump,

c=cL0 ¼ 0:4476. (A) shows the discrepancy between the latter value and the

maximum growth rate reached before the second burst.

FIG. 9. Effect of drag on chirping period at fixed diffusion, for �d ¼ 0:015

and 0.020.

FIG. 10. Effect of hole/clump shift on nonlinear growth rate. (a) Small width

Dvh ¼ Dvc ¼ 0:15. (b) Large width Dvh ¼ Dvc ¼ 0:25. In both cases we

choose vc0 ¼ vh0 ¼ 0:16, where lines cross in Fig. 7(b).
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for various hole/clump sizes and widths. We observe that in

all these cases, the growth rate increases with shift. This

clarifies the effect of drag on period: the larger the drag, the

more rapidly the hole/clump pair is decelerated after a burst,

the larger the nonlinear growth rate, thus the shorter the qui-

escent phase and the smaller the chirping period.

On the other hand, when the quiescent phase is much

smaller than the whole period, the dominant effect is the

lengthening of the bursting phase. In this case, chirping pe-

riod increases with increasing drag. Fig. 11 shows the time-

evolution of the amplitude in such a case.

D. Effect of diffusion

The effect of diffusion on chirping period is consistent

with simple intuitive arguments. Fig. 12 shows that the pe-

riod decreases as diffusion increases, for fixed drag. For

large diffusion, the effect tends to saturate. Again, the data

points are shown only for simulations categorized as periodic

chirping.

While the hole/clump amplitude is decreased and the

width is increased by diffusion, the product lc;hDvc;h is

conserved. Fig. 13 is a scan of the nonlinear growth rate

for decreasing lc;h and increasing Dvc;h, while lc;hDvc;h

¼ 8	 10�4 is kept constant, for various shifts of the hole/

clump pair. In all these cases, the rate decreases until

Dvc;h � 0:15, then increases. This clarifies the mechanism of

relaxation oscillation of the wave amplitude. After a burst,

the system is typically at the point marked (B) in Fig. 13

with a negative growth rate. As diffusion acts (as we move

to the right in the figure), the growth rate must go through

even more negative values before recovering toward the lin-

ear growth rate. The larger �d is, the quicker this process is,

thus the smaller the chirping period.

In addition to the effect of �d on the quiescent period,

increasing �d also decreases the duration of the bursting

phase, by damping holes and clumps. This is an additional

reason why Dtchirp decreases with increasing �d .

V. CONCLUSION

We have quantified several effects of finite collisions on

chirping velocity and chirping period, in the ideal limit of a

sine mode structure. Finite Krook collisions bend chirping

branches. The discrepancy from square-root time depend-

ency is 27% after one collision time. In the quiescent phase

of the periodic chirping regime, relaxation oscillations are

mainly due to diffusion, which brings a hole/clump pair to a

shape such that the linearized kinetic equation yields a nega-

tive growth rate, before the hole and clump are small enough

(in amplitude, large in width) to recover a positive growth

rate. The subsequent burst occurs before the velocity distri-

bution completely recovers, leading to instantaneous growth

rate about half the initial linear growth rate. Larger values of

diffusion shorten the period by combining two effects: (1)

structure dissipation during the burst and (2) faster recovery

of a positive growth rate. Larger values of drag shorten the

period if the quiescent phase is large enough, by deceleration

of hole/clump pair, which yields larger nonlinear growth

rate. Larger values of drag lengthen the period if the quies-

cent phase is short, by deepening the hole, which then sur-

vives longer.

The accuracy of our simple model of hole/clump pair as

two Gaussians is degraded after the first burst, as remnants

FIG. 11. Special case where chirping period increases with increasing drag.

Time-evolution of the electric field amplitude with �d ¼ 0:020 and two val-

ues of �f shown in the legend. The time is shifted by an arbitrary value, cho-

sen such that the first chirping burst in the plot starts at the same position.

FIG. 12. Effect of diffusion on chirping period at fixed drag, �f ¼ 0:005.

FIG. 13. Effect of diffusion on nonlinear growth rate. The product

lc;hDvc;h ¼ 8	 10�4 is kept constant.
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of holes and clumps from former bursts enter the picture.

Particle trapping and detrapping are not taken into account in

our theory. However, the agreement with simulations, where

trapping and detrapping naturally occurs, shows that their

effect on hole/clump amplitude, shift, and width is not signif-

icant in the quiescent phase. Additional effects, such as hole-

hole or clump-clump interactions, and long-range chirping,31

should be taken into account to improve the theory.

However, these effects do not impact our qualitative state-

ments when the quiescent phase is larger than the bursting

phase, or for the periodic chirping regime with small enough

frequency shift. The latter regime is important since it was

observed in tokamak experiments.6,10 Hole-hole or clump-

clump interactions can be neglected because one single hole

and one single clump dominate during one chirping burst. In

the opposite limit where the duration of the bursting phase is

of the same order as the chirping period, a different approach

can provide an estimate of the nonlinear growth rate, assum-

ing that the phase-space is dominated by one single

structure.32

Our results call for promising experiments, where colli-

sion frequencies may be used as control parameter of chirp-

ing period, to mitigate energetic particle transport in Alfv�en

wave experiments.

ACKNOWLEDGMENTS

The author is grateful for stimulating discussions with

Y. Idomura, S-I. Itoh, K. Itoh, P. H. Diamond, X. Garbet,

Y. Kosuga, and the participants in the 2009 and 2011 Festival

de Theorie. This work was supported by a grant-in-aid for

scientific research of JSPF, Japan (21224014). Computations

were performed on the XT system at RIAM.

1H. L. Berk, B. N. Breizman, and M. S. Pekker, Plasma Phys. Rep. 23, 778

(1997).
2B. N. Breizman, H. L. Berk, M. S. Pekker, F. Porcelli, G. V. Stupakov,

and K. L. Wong, Phys. Plasmas 4, 1559 (1997).
3H. V. Wong and H. L. Berk, Phys. Plasmas 5, 2781 (1998).
4X. Garbet, G. Dif-Pradalier, C. Nguyen, P. Angelino, Y. Sarazin, V.

Grandgirard, P. Ghendrih, and A. Samain, in Proceedings of AIP
Conference on Theory of Fusion Plasmas, edited by O. Sauter, X. Garbet,

and E. Sindoni (AIP, Melville, NY, ADDRESS, 2008), Vol. 1069, pp.

271–276.

5H. L. Berk, B. N. Breizman, and M. Pekker, Phys. Rev. Lett. 76, 1256

(1996).
6S. D. Pinches, H. L. Berk, M. P. Gryaznevich, S. E. Sharapov, and the

JET-EFDA Contributors, Plasma Phys. Controlled. Fusion 46, S47 (2004).
7A. Fasoli, B. N. Breizman, D. Borba, R. F. Heeter, M. S. Pekker, and S. E.

Sharapov, Phys. Rev. Lett. 81, 5564 (1998).
8R. F. Heeter, A. F. Fasoli, and S. E. Sharapov, Phys. Rev. Lett. 85, 3177

(2000).
9M. Lesur, Y. Idomura, K. Shinohara, X. Garbet, and the JT-60 Team,

Phys. Plasmas 17, 122311 (2010).
10Y. Kusama, G. J. Kramer, H. Kimura, M. Saigusa, T. Ozeki, K. Tobita, T.

Oikawa, K. Shinohara, T. Kondoh, M. Moriyama, F. V. Tchernychev, M.

Nemoto, A. Morioka, M. Iwase, N. Isei, T. Fujita, S. Takeji, M. Kuriyama,

R. Nazikian, G. Y. Fu, K. W. Hill, and C. Z. Cheng, Nucl. Fusion 39, 1837

(1999).
11W. W. Heidbrink, Plasma Phys. Controlled. Fusion 37, 937 (1995).
12K. G. McClements, M. P. Gryaznevich, S. E. Sharapov, R. J. Akers, L. C.

Appel, G. F. Counsell, C. M. Roach, and R. Majeski, Plasma Phys.

Controlled. Fusion 41, 661 (1999).
13E. D. Fredrickson, N. N. Gorelenkov, and H. L. Berk, Bull. Am. Phys.

Soc. 51, 181 (2006).
14M. Takechi, K. Toi, S. Takagi, G. Matsunaga, K. Ohkuni, S. Ohdachi, R.

Akiyama, D. S. Darrow, A. Fujisawa, M. Gotoh, H. Idei, H. Iguchi, M.

Isobe, T. Kondo, M. Kojima, S. Kubo, S. Lee, T. Minami, S. Morita, K.

Matsuoka, S. Nishimura, S. Okamura, M. Osakabe, M. Sasao, M. Shimizu,

C. Takahashi, K. Tanaka, and Y. Yoshimura, Phys. Rev. Lett. 83, 312

(1999).
15S. S. Medley, N. N. Gorelenkov, R. Andre, R. E. Bell, D. S. Darrow, E. D.

Fredrickson, S. M. Kaye, B. P. LeBlanc, A. L. Roquemore, and the NSTX

Team, Nucl. Fusion 44, 1158 (2004).
16H. L. Berk, B. N. Breizman, and N. V. Petviashvili, Phys. Lett. A 234, 213

(1997).
17H. L. Berk, B. N. Breizman, and H. Ye, Phys. Rev. Lett. 68, 3563 (1992).
18M. Lesur and Y. Idomura, Nucl. Fusion 52, 094004 (2012).
19G. Wang, Bull. Am. Phys. Soc. 57, 12 (2012).
20H. L. Berk, 24th IAEA Fusion Energy Conference, IAEA/CN-197/TH4-1,

San Diego (2012).
21H. L. Berk, B. N. Breizman, and M. Pekker, Phys. Plasmas 2, 3007 (1995).
22P. Bhatnagar, E. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).
23M. K. Lilley, B. N. Breizman, and S. E. Sharapov, Phys. Rev. Lett. 102,

195003 (2009).
24M. Lesur, Y. Idomura, and X. Garbet, Phys. Plasmas 16, 092305 (2009).
25R. M. Nyqvist, M. K. Lilley, and B. N. Breizman, Nucl. Fusion 52,

094020 (2012).
26D. Yu. Eremin and H. L. Berk, Phys. Plasmas 9, 772 (2002).
27M. K. Lilley, B. N. Breizman, and S. E. Sharapov, Phys. Plasmas 17,

092305 (2010).
28M. Lesur, Ph.D. dissertation, Ecole Polytechnique, France (2011).
29T. H. Dupree, Phys. Fluids 25, 277 (1982).
30K. Shinohara, M. Takechi, M. Ishikawa, Y. Kusama, A. Morioka, N.

Oyama, K. Tobita, T. Ozeki, the JT-60 Team, N. N. Gorelenkov, C. Z.

Cheng, G. J. Kramer, and R. Nazikian, Nucl. Fusion 42, 942 (2002).
31B. N. Breizman, Nucl. Fusion 50, 084014 (2010).
32M. Lesur and P. H. Diamond, Phys. Rev. E 87, 031101 (2013).

055905-9 M. Lesur Phys. Plasmas 20, 055905 (2013)

http://dx.doi.org/10.1063/1.872286
http://dx.doi.org/10.1063/1.872966
http://dx.doi.org/10.1103/PhysRevLett.76.1256
http://dx.doi.org/10.1088/0741-3335/46/7/S04
http://dx.doi.org/10.1103/PhysRevLett.81.5564
http://dx.doi.org/10.1103/PhysRevLett.85.3177
http://dx.doi.org/10.1063/1.3500224
http://dx.doi.org/10.1088/0029-5515/39/11Y/324
http://dx.doi.org/10.1088/0741-3335/37/9/002
http://dx.doi.org/10.1088/0741-3335/41/5/307
http://dx.doi.org/10.1088/0741-3335/41/5/307
http://dx.doi.org/10.1103/PhysRevLett.83.312
http://dx.doi.org/10.1088/0029-5515/44/11/002
http://dx.doi.org/10.1016/S0375-9601(97)00523-9
http://dx.doi.org/10.1103/PhysRevLett.68.3563
http://dx.doi.org/10.1088/0029-5515/52/9/094004
http://dx.doi.org/10.1063/1.871198
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1103/PhysRevLett.102.195003
http://dx.doi.org/10.1063/1.3234249
http://dx.doi.org/10.1088/0029-5515/52/9/094020
http://dx.doi.org/10.1063/1.1436492
http://dx.doi.org/10.1063/1.3486535
http://dx.doi.org/10.1063/1.863734
http://dx.doi.org/10.1088/0029-5515/42/8/302
http://dx.doi.org/10.1088/0029-5515/50/8/084014
http://dx.doi.org/10.1103/PhysRevE.87.031101

