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The presence of unavoidable impurities in fusion reactor has a strong impact on operational 

performance, since the burning plasma can be completely extinguished by radiative loss even 

with a small concentration. Recently, a strong emphasis has been placed on non-uniform 

distribution of impurity density over magnetic flux surfaces [1,2]. Although conventional 

neoclassical theory often assumes uniformly distributed densities [3], it is now widely accepted 

that accurate prediction of neoclassical impurity transport necessitates a proper calculation of 

poloidal asymmetry of impurity density, since it can enhance or reduce neoclassical transport. 

Toroidally rotating plasma is often responsible for such enhanced poloidal asymmetry of heavy 

impurities [4]. The centrifugal force driven by toroidal rotation pushes impurities to the wall, 

generating a strong ‘in-out’ poloidal asymmetry. As previously reported [1,5], poloidal 

asymmetries driven by strong rotation can increase neoclassical transport by an order of 

magnitude and even change its direction. 

In this paper, as an extension of previous work [6], the direct impact of toroidal rotation on 

turbulent and neoclassical impurity transport for tungsten (W), in connection with poloidal 

asymmetry, is investigated by means of the full-f gyrokinetic code GYSELA [7]. The main 

turbulence is driven by the ion temperature gradient (ITG) with adiabatic electrons. Impurities 

are in the trace limit, and thereby their presence does not impact the background turbulence. 

Poloidal asymmetries driven by centrifugal force 

In GYSELA, the injection of toroidal 

momentum can be accomplished by 

employing an adjustable source terms 

in the gyrokinetic Vlasov equation [8], 

𝑑𝐹𝑠̅

𝑑𝑡
= 𝒞𝑐𝑜𝑙𝑙 + 𝒮ℎ𝑒𝑎𝑡 + 𝒮𝑚𝑜𝑚        (1) 

Figure 1: Radial toroidal velocity profile for deuterium (D) 

and tungsten (W) w and w/o momentum source. 
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where  𝒞𝑐𝑜𝑙𝑙 is the collision operator and 𝒮ℎ𝑒𝑎𝑡, 𝒮𝑚𝑜𝑚 represent the heat and toroidal momentum 

sources respectively.  

Effective injection of toroidal momentum can be confirmed by comparing radial profiles of 

toroidal velocity described in Fig.1. For deuterium, Mach number (𝑀 = 𝑉𝜑,𝑠/𝑉𝑡ℎ,𝑠) is often 

found to be small even with additional momentum injection, while it can largely exceed unity 

for tungsten. Such high Mach number for tungsten can also be found in experiments. For 

example, Mach number for deuterium was found to be as high as 𝑀𝐷~0.7 in JET operations by 

means of neutral beam injections (NBI) [9], which indicates that an appropriate treatment of 

toroidal rotation is necessary for impurity transport modelling.  

In Fig.2, a comparison of poloidally inhomogeneous impurity density obtained from non-linear 

gyrokinetic simulations are shown for different cases. In the absence of momentum injection 

(Fig.2 left), toroidal velocity of both deuterium and tungsten remains low and the main 

contribution for poloidal W asymmetry mainly arises from the background turbulence [10]. The 

effects of centrifugal force become dominant for higher toroidal rotation. For the case with 

Mach ~ 1, approximately 20% excess of W impurities is localized in the outboard region, and 

this ‘in-out’ asymmetry is found to be amplified for Mach ~ 2 up to 40%.  

Turbulent and neoclassical impurity transport in toroidally rotating frame 

A non-negligible impact of strong toroidal rotation on both turbulent and neoclassical impurity 

transport has been presented in [5]. The main approach therein, was to calculate each transport 

channel independently; (i) turbulent transport through the gyrokinetic formulation in the 

toroidally co-moving frame and (ii) neoclassical transport by means of Hinton ordering [4], but 

without considering frictional effects at the lowest order. In GYSELA, however, thanks to the 

additional terms on the right sight of Eq.(1), both turbulent and neoclassical transports can be 

treated self-consistently in the laboratory frame including frictional effects as well.  

Figure 2: 2D poloidal section of perturbed W density. (Left) w/o momentum source (center) case with 

Mach ~1 (right) case with Mach ~ 2 
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In the case of trace impurities ( 𝛼 = 𝑁𝑧𝑍2/𝑁𝑖 ≪ 1) , the turbulent impurity flux can be 

decomposed as:  

Γ𝑧 = −𝐷𝑧 (
𝜕𝑁𝑧

𝜕𝑟
+ 𝐶𝑇

𝜕𝑇𝑧

𝜕𝑟
+ 𝐶𝑃

𝜕𝑞

𝜕𝑟
+ 𝐶𝑢

𝜕𝜔𝑧

𝜕𝑟
)           (2) 

where the terms represent turbulent diffusion, thermo-diffusion, curvature-driven transport and 

roto-diffusion respectively. Depending on the nature of dominant instabilities or magnetic 

curvature profiles, those terms exhibit different features; (i) the diffusion coefficient increases 

(decreases) with impurity charge Z in case of TEM (ITG) turbulence. (ii) the thermo-diffusion 

and roto-diffusion are directed inward (outward) in case of TEM (ITG) turbulence and (iii) the 

curvature-driven transport is directed inward (outward) for positive (negative) magnetic shear. 

Recent studies with the bounced-averaged gyrokinetic code TERESA have found consistent 

results in qualitative agreement with the quasi-linear approach [11, 12, 13].   

In general, neoclassical impurity transport 

can be expressed as a function of density, 

temperature and collisionality: Γ𝑛𝑒𝑜,𝑊 ∝

(𝑁𝑖, 𝑁𝑊, 𝑇𝑖, 𝑇𝑊, 𝜈𝑧𝑖) . In contrast to the 

assumption made by standard neoclassical 

theory, a non-uniform distribution of 

impurity density has to be included for a 

correct prediction of neoclassical flux. In 

Fig.3, neoclassical W-flux calculated from a 

reconstructed density 𝑁𝑊̃ = 𝛿𝑐𝑜𝑠𝜃 + ∆𝑠𝑖𝑛𝜃  are 

expressed as a function of 𝛿=‘in-out’ / ∆=‘up-down’ asymmetry parameter respectively. As 

𝛿=∆=0 represents a uniform impurity density, the importance of including poloidal asymmetry 

can be clearly identified since neoclassical flux are strongly enhanced as 𝛿 and ∆ increase.  

Consistently with the previous 

results in Fig.2 and 3, non-linear 

simulations with GYSELA 

reproduce enhanced neoclassical 

flux as the magnitude of injected 

momentum source increases, 

leading outboard localization of W 

Figure 3: Neoclassical W-flux as a function of 𝛿=‘in-out’ 

/ ∆=‘up-down’ asymmetry parameter.  The reconstructed 

density 𝑁𝑊̃ = 𝛿𝑐𝑜𝑠𝜃 + ∆𝑠𝑖𝑛𝜃 is used to calculate 

neoclassical flux while other terms, i.e. 𝑁𝑖 , 𝑇𝑖  𝑇𝑊 , 𝜈𝑧𝑖  are 

taken from GYSELA simulations. 

Figure 4: W impurity flux with different magnitudes of the 

momentum source. (Left) neoclassical flux (right) turbulent flux. 
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impurities (Fig.4). While strong density inhomogeneity driven by toroidal rotation has a direct 

impact on neoclassical transport, its contribution to turbulent transport is found to be negligible. 

Instead, toroidal rotation is directly linked to the roto-diffusion in Eq.(2), which in turn leads to 

an outward turbulent flux in case of ITG-turbulence. This term, proportional to A/Z where A is 

the mass number of the impurity, can often match the diffusive part especially in case of heavy 

impurities [13].  

In summary, in toroidally rotating plasma, the rotation-induced poloidal asymmetry increases 

impurity neoclassical transport inwardly leading to deleterious core accumulation of impurities. 

In contrast, turbulent transport is directed outwards as toroidal rotation increases due to the 

roto-diffusion term. Within the framework of non-linear gyrokinetic simulations, numerical 

results obtained by GYSELA are in qualitative agreement with the analytical description.    
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