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Abstract
Impurity transport is numerically investigated for different types of impurity, such as helium
(He), argon (Ar), and tungsten (W). Both turbulent and neoclassical transports are treated
self-consistently using the full- f gyrokinetic software GYSELA. For a light impurity (He), the
transport is mainly controlled by turbulence, while neoclassical transport is found to be
dominant in the case of a heavy impurity (W). The impact of a poloidal asymmetry of the
impurity density is also studied in detail and it is found to be strong in case of a high charge
impurity, due to its Boltzmann-type response. Such strong asymmetry might lead to a core
accumulation of heavy impurities by reducing the thermal screening factor of neoclassical
transport. The two main contributions to neoclassical transport—Pfirsch–Schlüter (PS) flux
and banana–plateau (BP) flux—are also studied. Depending on their mass (A) and charge (Z),
the magnitudes of each flux are determined accordingly. Tungsten shows a strong PS flux
compared to the other impurities, while BP flux is dominant in the case of argon. An analytical
model including the effect of poloidal asymmetry is compared with the numerical simulation
and a good agreement is found between them.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Understanding the transport of impurities in a fusion reactor
has been one of the important issues over the last few decades.
In particular, the central accumulation of heavy (high-Z) impu-
rities is widely recognized as a paramount concern, since it
might result in a complete extinction of the burning plasma
by radiative loss, even at concentrations as low as ∼10−5 [1].
Moreover, inherent light impurities injected at the edge to mit-
igate the heat power on the divertor [2] or produced by fusion
reactions can lead to a dilution of the D–T fuel by degrading
fusion efficiency.

The main causes of impurity transport can usually be
summarized using three classes: (i) magnetohydrodynamics
(MHD) activities caused by a sawtooth crash [3], tearing
modes [4] or edge-localized modes [5, 6] facilitated by a redis-

∗ Author to whom any correspondence should be addressed.

tribution of impurities; (ii) dominant turbulent transport, espe-
cially for light impurities [7, 8] and (iii) neoclassical trans-
port—especially in the presence of impurity density poloidal
asymmetry—mostly for heavy impurities [9, 10]. A large
number of existing studies have reported that a core accumu-
lation of W has been observed in different tokamaks [11–13].
Hopefully, avoiding or delaying such accumulation can be
accomplished by the application of an RF heating system,
such as ion cyclotron resonance Heating (ICRH) or electron
cyclotron resonance heating (ECRH), leading to a significant
reduction of impurities in the core plasma [14–16]. However,
discrepancies still exist between theoretical predictions and
experimental data with respect to the density or temperature
profile of impurities during tokamak discharges [8, 17].

In recent years, special attention has been paid to
the poloidal asymmetry of impurity concentrations and its
impact on impurity transport [18–23]. Unlike conventional

1741-4326/21/046037+10$33.00 1 © EURATOM 2021 Printed in the UK

https://doi.org/10.1088/1741-4326/abe6b4
https://orcid.org/0000-0002-0174-2300
https://orcid.org/0000-0001-5730-1259
https://orcid.org/0000-0003-2479-563X
https://orcid.org/0000-0002-8911-5546
mailto:kyungtak.lim@univ-lorraine.fr
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-4326/abe6b4&domain=pdf&date_stamp=2021-3-18


Nucl. Fusion 61 (2021) 046037 K. Lim et al

neoclassical prediction, which assumes an almost uniform
impurity distribution over the flux surface [24], a strong
poloidal asymmetry has repeatedly been observed in various
cases and mounting evidence suggests that taking account of
such asymmetry is key for a predictive model [9].

A linearized collision operator has successfully been imple-
mented in the full- f gyrokinetic software GYSELA [25]. Since
its first use for neoclassical transport, numerical improvements
have been achieved, offering a better agreement with theoreti-
cal prediction. Using the collision operator in the gyrokinetic
code enables the study of impurity transport in turbulent and
collisional regimes at the same time. Taking these two chan-
nels into account simultaneously is of great interest to clarify
the synergy effect that presumably originates from poloidal
density asymmetry driven by turbulence [27].

In this work, as an extension of previous work [28],
GYSELA numerical simulations are extended to investigate
the impurity transport of various impurities in different col-
lisional regimes, in particular, helium (He), argon (Ar), and
tungsten (W) representing low, intermediate, and high col-
lisional regimes, respectively. To achieve this end, turbulent
and neoclassical transports in the presence of poloidal asym-
metry driven by turbulence are compared with an analytical
model in each case and the effects of poloidal asymmetry on
neoclassical transport are alsoinvestigated.

This paper is organized as follows. In section 2, analyti-
cal models for impurity transport are derived for the case of
non-uniform density distribution. Section 3 outlines the overall
numerical results of comparing the turbulent and neoclassical
particle flux of each species with impurity poloidal asymmetry
due to turbulence and the impact of the non-uniform distribu-
tion of impurity density on impurity transport is also described
in detail. Conclusions are drawn in the final section and some
suggestions for future work are proposed.

2. Neoclassical impurity flux

In this section, an analytical description of neoclassical impu-
rity flux is derived using two different assumptions. First,
neoclassical fluxes are expressed as a function of the chew-
goldberger-low (CGL)-pressure tensor [29], assuming weak
poloidal asymmetries of the impurity density. The purpose of
such derivation is to clarify the main driving terms of the neo-
classical fluxes i.e. banana–plateau (BP) and Pfirsch–Schlüter
(PS). Second, a more detailed form of impurity flux is given,
including the analytic impact of the poloidal asymmetries of
the density, the effects of which are significant compared to
neoclassical particle fluxes, changing an order of magnitude
or even the sign [18]. This analytical formula will be used for
a later comparison with numerical simulations in section 3. A
more detailed derivation of the latter can be found in [28].

2.1. Impurity flux with a uniform density distribution

The analytical form for a neoclassical impurity flux can be
derived from the gyrokinetic equation.

∂F̄z

∂t
+

1
B∗
‖
∇z ·

(
żB∗

‖F̄z

)
= C(F̄z), (1)

where F̄z is the distribution function of the impurity and B∗
‖ =

B + mz
eZ v‖b · (∇× b) is the volume element in guiding-center

velocity space and C is the collision operator. Here, the differ-
ence in trajectory between the cyclotron’s motion and the guid-
ing center is compensated for by investigating the drift kinetic
limit of large scale flows, where details of the short-scale
gyrations are suppressed.

In the steady state, the conservative form of particle flux
∇ · Γ = 0 can be obtained by taking the first moment of
equation (1) where Γ = Γ‖b + Γ⊥. The perpendicular flow
can then be recast as:

Γ⊥z = ΓE+ΓD+Γmag = NzvE + Nz〈vDz〉−∇×
[
Nz

〈 μ

Ze
b
〉]

,

(2)
where vE is the E × B drift and vD is the magnetic drift. The
magnetization fluxΓmag = ∇×Mz with Mz = −

∫
d3vF̄zμb

is added to account for the correction associated with the
cyclotron’s motion of particles around its guiding centre [30]
and the bracket is an average over the distribution function.

〈. . .〉 = 1
N

∫
d3vF̄z . . . . (3)

Applying an average of the distribution function over the mag-
netic drift vD leads to the impurity flux as a function of the
CGL-pressure tensor. After properly arranging all the terms
in equation (2), one can find an analytical expression of the
neoclassical particle BP and PS fluxes (appendix A).

〈ΓBP · ∇ψ〉ψ = − I
Ze

〈B · ∇ ·Π〉ψ
〈B2〉ψ

(4)

〈ΓPS · ∇ψ〉ψ = − I
Ze

〈
(Neb · ∇φ+ b · ∇ ·Π)

×
(

1
B
− B

〈B2〉ψ

)〉
ψ

, (5)

where I = RBϕ is related to the poloidal current that flows
through a magnetic surface, Π is the CGL-pressure tensor and
the bracket 〈. . .〉ψ corresponds to a flux surface average.

The BP flux, which is dominant in the long mean-free-path
regime, is mainly driven by pressure anisotropy. The origin of
pressure anisotropy is usually due to the magnetic drift driven
by a non-uniform magnetic field. Since the effect of collisions
is less strong than that of advection in this regime, pressure is
not completely isotropized, leading to perpendicular flux [24].
Conversely, the main driving source of PS flux arises from
poloidal variation of the friction force [24]. In this regime, the
contribution of pressure anisotropy vanishes because of strong
collisions.

2.2. Impurity flux with poloidal asymmetries

2.2.1. Determination of the poloidal variation of impurity flux
Γz. In what follows, we derive neoclassical impurity flux
in presence of poloidal density asymmetry. As it is already
treated in the previous section, the total impurity flux from the
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gyrokinetic equation can be written

Γz = Γ‖zb + Nz
B
B2

×∇φ+
B

ZeB2
×∇ ·Π. (6)

Using an axisymmetric notation

∇φ =
∂φ

∂ψ
∇ψ +

∂φ

∂θ
∇θ

∇P⊥z =
∂P⊥z

∂ψ
∇ψ +

∇P⊥z

∂θ
∇θ

(7)

equation (6) can be reformulated as follows:

Γz = KzB − NzΩzR
2∇ϕ+

Π‖z

ZeB
(b × κ)

+

(
Nz

∂φ

∂θ
+

1
Ze

∂P⊥,z

∂θ

)
b
B
×∇θ, (8)

where Π‖z = P‖z − P⊥z is the pressure anisotropy, κ = −b ×
(∇× b) is the magnetic curvature and we have introduced the
following relations:

Ωz =
∂φ

∂ψ
+

1
NzZe

∂P⊥z

∂ψ

Kz =
Γ‖z

B
+

I
B2

NzΩz.

(9)

In the above equation, Kz(ψ, θ) is a function of the poloidal
angle and a more precise form of it can be obtained using the
incompressibility of impurity flow ∇ · Γz = 0. The detailed
derivation used to find Kz(ψ, θ) is described in [28] and we
will use the value of Kz = Kz0(ψ) + Kz1(ψ, θ) directly from
the aforementioned paper.

Kz0(ψ) = 〈Kz〉ψ

Kz1(ψ, θ) = − 1
B

∂

∂ψ

(
IΠ‖z

ZeB

)
+

〈
1
B

∂

∂ψ

(
IΠ‖z

ZeB

)〉
.

(10)

2.2.2. Link between the frictional forceF and Kz. The analyt-
ical form of the neoclassical impurity flux can be also derived
from the momentum equation by taking its toroidal projection:

mN
∂V
∂t

+∇ ·Π− eN(E + V × B) = F , (11)

where the stress tensor Π = P + mNVV and F =∫
mvC( f )d3v is the frictional force.
By projecting the above equation in the Rϕ̂-direction and

applying the flux surface average, we can rewrite the above
equation as follows:〈

Rϕ̂ · ∂(mzNzVz)
∂t

〉
+ 〈Rϕ̂ · ∇ ·Π〉

− 〈NzZeRϕ̂ · (E + V × B)〉 = 〈RF‖zi〉. (12)

Neoclassical theory usually assumes a steady state (∂t = 0)
and a toroidal axisymmetry (∂ϕ = 0). Also, the stress ten-
sor Π is a small term in neoclassical ordering, compared to
other components in the case of strong collisions, thus it is

often neglected. Using the relation B = I(ψ)∇ϕ+∇ϕ×∇ψ
where I is related to the plasma current and ϕ̂ = R∇ϕ, the
particle flux across magnetic surfaces can be derived as fol-
lows [31] (the detailed expression of F‖zi is explained in
appendix C):

〈Γz · ∇ψ〉neo = −
〈

IF‖zi

ZeB

〉
. (13)

2.2.3. Impurity flux with poloidal asymmetries. Finally, one
can find the analytical form of the impurity flux with poloidal
asymmetry by properly arranging equations (10), (13), and
(C.2). As already shown in the previous section, one can divide
the total impurity flux into two different channels Γψ

neo =

Γψ
BP + Γψ

PS.

ΓBP = − I
Ze

〈
B2

Nz

〉−1

ψ

×
〈

B · ∇θ

Nz

[
∂P⊥z

∂θ
+ B

∂

∂θ

(
Π‖z

B

)]〉
ψ

(14)

ΓPS =
I

Ze
mzνzi

⎧⎪⎨
⎪⎩

Ti

e
I

Lψ,i

(〈
Nz

B2

〉
ψ

−
〈

B2

Nz

〉−1

ψ

)

− u

⎛
⎜⎝〈Nz〉ψ − 〈B2〉ψ〈

B2

Nz

〉
ψ

⎞
⎟⎠+

TiI
e

(〈
Nz

B2Lψ,z

〉
ψ

−
〈

1
Lψ,z

〉
ψ

〈
B2

Nz

〉−1

ψ

)
−
〈

1
B

∂

∂ψ

(
IΠ‖z

ZeB

)〉
ψ

+

〈
B
Nz

∂
∂ψ

(
IΠ‖z
ZeB

)〉
ψ〈

B2
z

Nz

〉
ψ

⎫⎪⎬
⎪⎭ , (15)

where 1/Lψ = 1/Lψi + 1/Lψz with 1/Lψ i = ∂ψ ln Pi − 3
2∂ψ

ln Ti and 1/Lψz = − 1
TiZNz

∂ψP⊥z and u is the value related to
the poloidal velocity of the main ion.

In the trace limit of impurities (NzZ2/Ni) 	 1, u can be
expressed as

u =

(
kneo −

3
2

)
I fc

e〈B2〉ψ
, (16)

where the value of kneo ≈ 1.17 is obtained in the limit of a large
aspect ratio ε 	 1 with the main ion in the banana regime [32].
Thus, the following formula u ≈ −0.33 I fc

e〈B2〉ψ
will be used for

further analysis. Here, fc represents the fraction of circulat-
ing particles and can be obtained in a large aspect ratio with a
circular cross-section

fc = 1 − f t =
3〈B2〉ψ

4

∫ λc

0

dλ

〈
√

1 − λB〉ψ
≈ 1 − 1.46

√
ε,

(17)
where λ = μ/E is the pitch angle and λc = B −1

max is the critical
λ for trapping.
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Comparing equations (4) and (5) with equations (14) and
(15) shows how unevenly distributed impurities impose a
considerable effect on their fluxes. Note that the main driv-
ing sources for BP/PS fluxes—pressure anisotropy for the
BP flux and a poloidal variation of frictional force for the
PS flux—are unchanged, while additional terms have been
added in equation (15) arising from the poloidal dependency
of Kz1(ψ, θ) in equation (10). The presence of the Π‖z term
in equation (15) may seem odd at first sight, since pressure
tend to be isotropic in the highly collisional regime. How-
ever, it has been pointed out that even in the high collisional
regime, pressure anisotropy can still have an influence on a PS
flux [28].

3. Numerical results

Different kinds of impurity coexist during a plasma discharge.
Depending on its mass (A) and charge (Z), the main impurity
flux can accordingly be determined, whether turbulent or neo-
classical. Thus, the purpose of this section is, first of all, to
provide the impurity flux of different species in the presence of
poloidal asymmetries generated by turbulence and to compare
them with the analytical models discussed previously. Sec-
ond, the effect of poloidal asymmetries on impurity transport
is investigated in detail. To achieve this end, we selected three
impurities—helium (Z = 2, A = 4), argon (Z = 18, A = 40)
and tungsten (Z = 40, A = 184)—each representing different
collisional regimes according to the normalized collisionality
ν∗a [24]:

ν∗a =
νdetrap,a

ωb,a
≈ qR0

ε3/2

νa

vTa
(18)

=
qR0

ε3/2

4
√
π

3
e4 ln Λ

(4πε0)2

Z2
a

T2
a

×

⎡
⎢⎢⎢⎣naZ2

a +
∑
b �=a

√
2nbZ2

b

(
1 + ma

mb

)
(

1 +
v2

Tb

v2
Ta

)3/2

⎤
⎥⎥⎥⎦ . (19)

While the main ions are in the banana regime with ν∗D = 0.1
at mid radius, the relative ratio of the detrapping frequency
νdetrap,a = νa/2ε versus the bounce frequency ωb,a = vTa

√
ε√

2πqR
determines three collisional regimes: ν∗ 	 1 for the banana
regime, 1 	 ν∗ 	 ε−3/2 for the plateau regime and ν∗ 
ε−3/2 for the PS regime (figure 1).

For numerical simulations, the following parameters in
table 1 are chosen for impurities. With a given density and tem-
perature profile for the main ions (R/Lni = 2.2 and R/LTi = 6),
the main instability is basically the ion temperature gradient
instability and electrons are treated adiabatically. An isotropic
heat source is added close to the inner boundary of simulations
[33], allowing convergence toward the steady state. In addi-
tion, a Krook operator is applied at the outer boundary region
for artificial damping of the heat flux. Without any further
assumptions of ionization or recombination, the impurity con-

Figure 1. Radial profile of collisionality for D, He, Ar and W.

Table 1. Numerical simulation parameters.

Parameter Normalization

Time step Δtωci = 16
Normalized gyroradius ρ∗ = ρi/a = 1/190
Impurity concentration Cz = 10−6

Inverse aspect ratio ε = R0/a = 4.4
Density R/Ln = 2.2
Temperature R/LT = 6

Magnetic field B =
(

B0R0
R

) [
r

q(r)R0
eθ + eϕ

]

Safety factor q(r) = 1.5 + 1.3 exp[2.5 log(r/a)]

centration is kept at the trace limit (Cz = 10−6) so that the back-
ground turbulence is not affected by the presence of impurities.
Also, all numerical simulations are performed in axisymmet-
ric geometry with concentric magnetic surfaces. The magnetic
field is defined as B = (B0R0/R)[ r

q(r)R0
eθ + eϕ], where B0 is

the magnetic field at the axis and the safety profile is given by
q(r) = 1.5 + 1.3 exp

(
2.5 log

(
r
a

))
.

Although electrons are treated adiabatically, running a sim-
ulation with an impurity requires considerable computation
time, since a higher resolution is necessary for the impurity

Larmor radius (ρz =
1
Z

√
mz
mi
ρi). To overcome this issue, the

same strategy is applied as that used in [28] has been applied:
(i) the first simulation runs without impurity until turbulence
is well developed and steady. At this stage, the numerical
grid (Nr, Nθ, Nϕ, Nv‖ , Nμ) = (256, 512, 32, 127, 64) is used for
the main ions. (ii) Once the main ions reach a steady state,
the high-resolution numerical grid (Nr, Nθ, Nϕ, Nv‖ , Nμ) =
(512, 1024, 32, 127, 64) is used without the impurity in order
to reorganize the system before adding the impurity. (iii) After
the reorganization, the impurity is added to the simulation with
the same numerical grid as the previous step.

The duration of each simulation is close to the ion confine-
ment time, and the final stage (iii) of each impurity lasts for a
sufficiently long time. However, the confinement time required
for impurities to reach the steady state is much longer than the
ion confinement time, hence the radial plasma profiles of the
impurities, such as density and temperature, are not completely
steady.
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Figure 2. Impurity fluxes of different impurities in the presence of
poloidal asymmetries, obtained by numerical simulation
(GYSELA). Total impurity flux (black solid line) is separated into a
turbulent part (red dashed line) and a neoclassical part (blue dashed
line).

3.1. Impurity flux with poloidal asymmetry driven by
turbulence

By convention, the total impurity flux can be expressed as the
sum of two different contributionsΓtot = Γturb + Γneo. Various
approaches have been suggested to define such fluxes properly
[27]. In this work, we adopt the following definitions:

〈Γturb
z · ∇ψ〉ψ =

〈∫
d3vF̄zv

n �=0
E · ∇ψ

〉
ψ

(20)

〈Γneo
z · ∇ψ〉ψ =

〈∫
d3vF̄z(vD,s + vn=0

E ) · ∇ψ

〉
ψ

, (21)

where n is the toroidal mode number.
The impurity fluxes, averaged out over 4000ωci, are shown

respectively in figure 2, where the black solid line stands for
the GYSELA numerical flux which is the sum of the turbulent
flux (red dashes) and the neoclassical flux (blue dashes).

A distinct difference between species is clearly observed
in figure 2. For helium, the dominant flux mainly originates
from turbulent transport flowing outward from the core (posi-
tive Γz) except in the region ρ ∼ 0.3, where an overestimation
of the neoclassical flux is presumably produced by poloidal
density asymmetry. These results fit well with our prior expec-
tation that helium, as a light impurity, is placed in the banana
regime (figure 1) where collisional effects are small compared

to those of turbulent fluxes. Also, the outward flow of an impu-
rity usually gives rise to a hollow density profile (figure 3). In
recent works [17, 34], such hollow profiles were experimen-
tally observed in the ASDEX Upgrade and JET tokamaks with
neutral beam injection (NBI) heating plasmas (peaked den-
sity profiles of helium have also been reported in the case of
high-ECRH systems).

The neoclassical contribution to the total impurity flux
becomes larger when impurities with higher Z are considered:
in the simulations we have performed, it is significant for argon
and tungsten. Argon, whose collisionality is mostly extends
mostly over the plateau region (figure 1), shows two distinct
regions where the total flux (black solid line) is roughly aligned
(i) with neoclassical flux (ρ < 0.3) and (ii) with turbulent flux
(ρ > 0.5). In terms of magnitude, turbulent flux is compara-
ble to neoclassical flux, giving a nearly equal contribution to
the total flux. Unlike helium, argon generates a inward flux (Γz

negative) leading to accumulation in the core (figure 3).
For tungsten, the heaviest of the analyzed impurities, tur-

bulent flux is largely reduced, while neoclassical transport still
exerts an important effect in the core. The overall impurity flux
is directed inward, driving its core accumulation due to neo-
classical convection (figure 3). A large number of experimental
cases have already confirmed core accumulation [11–13] and
recent studies have proposed that the appropriate use of an
additional heating system might mitigate such accumulation
by reducing neoclassical convection and increasing turbulent
diffusion [18, 35]. In this work, no additional heating systems
are used except the heat source for flux-driven simulations.

A comparison of the neoclassical part of numerical flux
(blue dashes) and that obtained from the analytical model (grey
solid) using equations (14), and (15) is depicted in figure 4. At
this point, special attention has to be paid to how our analytical
formula is numerically calculated. Unlike other models which
use a solution of the drift-kinetic equation (NEO [36]) or a
moment approach (NCLASS [24, 37]), GYSELA makes direct
use of numerical data to estimate the neoclassical flux, which
means every term in equations (14), and (15) is calculated at
each time step to predict the neoclassical transport.

It is clearly shown in figure 4 that in all impurity cases, our
numerical simulations reproduce satisfying results in conjunc-
tion with our analytical model. The neoclassical flux is directed
inward for all impurities due to the inward neoclassical convec-
tion driven by the main ion density profile. In agreement with
our previous results, helium generates a weak neoclassical flux
compared to other impurities. It would be also instructive to
analyze the neoclassical flux in detail using its components.

In figure 5, the radial BP and PS fluxes are calculated from
GYSELA numerical simulations using the analytical formula
equations (14) and (15). As expected, tungsten produces the
most important PS flux compared to the other impurities, due
to its high collisionality, while the PS flux due to helium is
almost negligible. For BP fluxes, argon, whose collisionality
extends over the plateau region, produces a stronger BP flux
than the other species. Moreover, in the banana regime, helium
starts to generate a BP flux.
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Figure 3. Time evolution of impurity density in the core (left) and at the edge (right).

Figure 4. Comparison between the neoclassical flux obtained by
numerical simulation ((GYSELA) (blue dashed line) from
equation (21) and that obtained from the analytical model (grey
solid line) using equations (14) and (15).

3.2. Poloidal asymmetry driven by background turbulence

A number of studies have pointed out that a non-uniform dis-
tribution of impurity over the flux surfaces can strongly modify
neoclassical transport [19, 32, 38] while its contribution to
turbulent transport seems less significant [9]. Although there
are many factors that can trigger poloidal asymmetry, in this
paper we restrict ourselves to poloidal asymmetry driven by
turbulence only.

The poloidal asymmetries generated by turbulence are
expected to be larger for a high-Z impurity since it has
a Boltzmann-type response to electric potential, thus its
response is proportional to the impurity charge. According to
equation (15), PS flux is mostly driven by the poloidal variation
of frictional force which is a function of the impurity density
Nz from equation (C.2). Therefore, it is clear that the PS flux is

Figure 5. BP flux and PS flux for different impurity species,
calculated from GYSELA numerical simulations using
equations (14) and (15).

modified by the poloidal asymmetry and its effect is stronger
in the case of heavy impurities—tungsten, in this work.

This fact is clearly shown in figure 6, in which the perturbed

densities Ñz =
Nz−〈Nz〉ψ
〈Nz〉ψ of different impurities are presented in

the poloidal section. As expected, tungsten shows the strongest
poloidal asymmetry (∼20%), while helium presents a very
weak asymmetry (∼3%). Such an asymmetry of impurity
density can be expressed as Nz(ψ, θ) = Nz(ψ)[1 + δ cos θ +
Δ sin θ], where δ and Δ represent ‘in–out’ and ‘up–down’
asymmetries, respectively. According to [18], it is usually an
‘in–out’ asymmetry that plays an important role in neoclas-
sical transport, since the geometric factor in equation (15)
(corresponding to PA, PB in equation (23)) can be recast as a
function of δ and Δ and the ‘up–down’ asymmetry Δ only
appears as a second-order term in the impurity flux

〈B2〉ψ
〈Nz〉ψ

[〈
Nz

B2

〉
ψ

−
〈

B2

Nz

〉−1

ψ

]
= 2ε(ε+ δ) +

δ2 +Δ2

2

〈B2〉ψ
〈Nz〉ψ

[
〈Nz〉
〈B2〉ψ

−
〈

B2

Nz

〉−1

ψ

]
= εδ +

δ2 +Δ2

2
.

(22)
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Figure 6. Poloidal asymmetries of impurity density given by numerical simulations performed using GYSELA.

Figure 7. Impurity density distribution as a function of the poloidal
angle given by the GYSELA numerical simulations.

However, poloidal asymmetry driven by turbulence tends
to generate an ‘up–down’ asymmetry (figure 7) through the
poloidal convective cells [39]. Such an ‘up–down’ asymmetry
is less dramatic than neoclassical ‘in–out’ asymmetries and its
different impact has already been treated in [32].

Poloidal asymmetry affects neoclassical transport, but it can
also change the so-called thermal screening factor Hneo. As
the name suggests, this term, related to the main ion tempera-
ture profile LTi, prevents impurities from accumulating in the
core. Derived from the main ion parallel heat flux in neoclas-
sical theory, the factor is usually equal to Hneo � − 1

2 when the
main ions are in the banana regime [24], but this screening term
is also susceptible to modification by poloidal asymmetry. To
clarify this mechanism, it is helpful to rewrite equation (15) in
a different way, as was done in [19]:

R〈Γneo
Z · ∇ψ〉ψ ∝

[
− R

Lni
− Hneo

R
LTi

+
1
Z

R
Lnz

]

∝
[(

− R
Lni

− Hsym
R

LTi
+

1
Z

R
Lnz

)
PA

− 0.33PB fc
R

LTi

]
, (23)

where Hneo = Hsym + 0.33 PB
PA

fc with the factor Hsym = − 1
2 in

the absence of poloidal asymmetries. This factor appears in the
expression of 1

Lψ,i
= ∂ ln Ni

∂ψ
+ Hsym

∂ ln Ti
∂ψ

in equation (15).

In this equation, the second term corresponds to the ther-
mal screening term and fc is the fraction of passing particles.
The geometric factors PA, PB quantify the impact of poloidal
asymmetry, defined as follows:

PA =
1

2ε2

〈B2〉ψ
〈Nz〉ψ

[〈
Nz

B2

〉
ψ

−
〈

B2

Nz

〉−1

ψ

]

PB =
1

2ε2

〈B2〉ψ
〈Nz〉ψ

[
〈Nz〉
〈B2〉ψ

−
〈

B2

Nz

〉−1

ψ

]
.

(24)

Equation (23) reveals that a non-uniform distribution of impu-
rities can modify the neoclassical flux or even reduce the tem-
perature screening term by facilitating the accumulation of
impurities at the core. From equation (24), it readily appears
that if the impurity density is uniform over the flux surfaces,
i.e. if 〈Nz〉 = Nz, then PA = 1 and PB = 0. In this case, stan-
dard neoclassical results are recovered. The radial profiles of
PA, PB for different impurities are presented in figure 8, where
the outer regionsρ < 0.1 and ρ > 0.9 are excluded to avoid the
effects of boundary conditions. Although external heating sys-
tems are absent in our cases, background turbulence generates
a poloidal asymmetry of density and it is strongly enhanced
for W due to its high charge and large mass.

The impact of poloidal asymmetry on thermal screening is
depicted on figure 9. The theoretical prediction of neoclassi-
cal fluxes in two different cases: (i) with thermal screening
Hsym = − 1

2 (red solid line) and (ii) without thermal screening
Hsym = 0 (green solid line) are compared with the neoclassi-
cal flux obtained from the GYSELA simulation (blue dashed
line). The effect of Hsym on impurity transport can easily be
understood by looking at the relative magnitude of each flux.
When the thermal screening effect is removed, i.e., Hsym = 0,
the neoclassical flux shows a strong inward flux, leading to
strong core accumulation, while the accumulation is mitigated
in the case of thermal screening (Hsym = − 1

2 ), as expected.
In overall radius, GYSELA reproduces a value close to

the theoretical prediction except in the region 0.1 < ρ < 0.5.
The main reasons for such a difference can be summarized as
follows. First, poloidal asymmetries driven by turbulence can
reduce the thermal screening effect through the geometric fac-
tor PB in equation (23). Second, the term u in equation (15),

7
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Figure 8. The radial profile of geometric factors PA (left), PB (right) without an external heating system.

Figure 9. Neoclassical impurity flux of tungsten from the
theoretical predictions of equations (14) and (15) with two different
values of Hsym. With thermal screening, Hsym = − 1

2 (red solid line)
and without thermal screening, Hsym = 0 (green solid line). For
comparison, the neoclassical impurity flux from GYSELA is also
depicted (blue dashed line).

linked with the poloidal rotation of the main ions, is calcu-
lated for the neoclassical case only; thus, the value of kneo

in equation (16) differs from the neoclassical prediction
(kneo ∼ 1.17) due to turbulence and it has been reported in [40]
that the adjusted value of kneo produces a better agreement.

4. Conclusions

In this work, numerical modelling of turbulent and neoclassi-
cal transport has been performed for various impurities—He,
Ar and W—using the full- f gyrokinetic code GYSELA. Our
results demonstrate that the main dominant particle flux and its
direction sensitively depend on the type of impurity. Most of
the light impurity (He) transport is due to turbulence, while
heavy impurity (W) transport is dominated by neoclassical
effects. Moreover, the two main driving terms for neoclassical
flux—BP and PS fluxes—have been investigated. Our numer-
ical simulations demonstrate that helium produces almost neg-
ligible BP and PS fluxes, compared to the other two impurities,
due to its very low collisionality, while significant BP and PS
fluxes are reproduced for argon and tungsten leading to inward
accumulation.

In the absence of an external heating system, we have also
verified that poloidal asymmetry driven by turbulence can
modify the neoclassical particle flux, and its impact becomes
more important in case of heavy impurities. Furthermore, these
strong asymmetries for heavy impurities reduce the thermal

screening factor which facilitates deleterious core accumula-
tion. The neoclassical flux given by our analytical model is
shown to be in good agreement with our numerical simulations
and GYSELA reproduces a thermal screening factor close to
that of the theoretical prediction Hsym � − 1

2 .
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Appendix A. Perpendicular flux and CGL pressure
tensor

The perpendicular part of the particle flux consists of three
different drift terms:

Γ⊥ = NvE + N〈vD〉 − ∇ ×
[
N
〈 μ

Ze
b
〉]

, (A.1)

where the magnetic drift consists of the curvature and ∇B
drifts.

vDs =
msv

2
‖

ZeB
b × κ+

μ

Ze
b ×∇ ln B. (A.2)

Here, κ = (b · ∇)b is the magnetic curvature and κ can be
expressed otherwise (appendix B).

κ =
∇⊥B

B
+

μ0∇⊥P
B2

. (A.3)

Applying an average of the distribution function (〈. . .〉 =
1
N

∫
d3vF̄z . . .) over equation (A.2) leads to:

Γ⊥D =
P‖

ZeB
b × κ+

P⊥
ZeB

b ×∇ ln B, (A.4)
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where we used the following relations

P‖ =

∫
d3vF̄mv2

‖

P⊥ =

∫
d3vF̄μB

(A.5)

−∇×
[
N
〈 μ

Ze
b
〉]

=
B

ZeB2
×∇P⊥ − P⊥

ZeB
b

×∇ ln B − P⊥
ZeB

∇× b (A.6)

using the following vector identities ∇(AB) = A∇B + B∇A
and ∇

(
B
A

)
= A∇B−B∇A

A2 .
Therefore, equation (A.1) can be recast as

Γ⊥ = NvE + (P‖ − P⊥)
1

ZeB
(b × κ) +

B
ZeB2

×∇P⊥

= NvE +
B

ZeB2
×∇ ·Π, (A.7)

where we defined

∇ ·Π = ∇P⊥(P‖ − P⊥)κ+

[
(B · ∇)

(
P‖ − P⊥)

B

)]
b.

(A.8)
The radial particle flux can then be written as follows:

〈Γ⊥z · ∇ψ〉ψ =

〈[
B

ZeB2
× (Nze∇φ+∇ ·Π)

]
· ∇ψ

〉
ψ

,

(A.9)
where the bracket 〈. . .〉 corresponds to a flux surface
average

〈G〉ψ =

∫ dθ dϕ
B·∇θ G∫ dθ dϕ
B·∇θ

. (A.10)

From the expression of the magnetic field B = I(ψ)∇ϕ+
∇ϕ×∇ψ, one can find the useful relationship:

B
B2

×∇ψ =
I

B2
B − R2∇ϕ. (A.11)

In a steady state (∂t = 0) and with an axisymmetric system
(∂ϕ = 0), equation (A.9) can be rewritten as

〈Γneo · ∇ψ〉ψ = −
〈

I
ZeB2

(Nze · ∇φ+ B · ∇ ·Π)

〉
ψ

.

(A.12)
It is still possible to further decompose equation (A.12) into
two parts Γneo = ΓBP + ΓPS using the identity [31]

1
B

=
1
B
− B

〈B2〉ψ
+

B
〈B2〉ψ

. (A.13)

Finally, we obtain the impurity BP and PS fluxes, respectively.

〈ΓBP · ∇ψ〉ψ = − I
Ze

〈B · ∇ ·Π〉ψ
〈B2〉ψ

(A.14)

〈ΓPS · ∇ψ〉ψ = − I
Ze

〈
(Neb · ∇φ+ b · ∇ ·Π)

×
(

1
B
− B

〈B2〉ψ

)〉
ψ

. (A.15)

Appendix B. Magnetic curvature

The magnetic curvature is defined as κ = (b · ∇)b. Using the
vectorial identity A × (∇× B) = A · ∇B − (A · ∇)B, we can
rewrite the magnetic curvature:

κ = (b · ∇)b

= −b × (∇× b) = −b × (∇× B/B)

= −b ×
(
∇
(

1
B

)
× B

)
− b × (∇× B)/B

= −b × (b ×∇ ln B) + μ0J × B/B2

=
1
B

[∇− b(b · ∇)]B + μ0J × B/B2. (B.1)

Defining ∇⊥ = ∇− b(b · ∇) = −b × (b ×∇) as the gradi-
ent perpendicular to B, we can then rewrite the above equ-
ation as

κ = ∇⊥ ln B +
μ0J × B

B2
=

∇⊥B
B

+
μ0∇⊥P

B2
. (B.2)

Appendix C. Parallel frictional force

In case of a heavy impurity in the trace limit, the frictional
force F‖zi can be written as a linear function of the parallel
velocity V‖s and the parallel heat flux q‖s [24].

F‖zi = −Nzmzνzi

[
V‖z − V‖i −

3
5

1
1 + x2

zi

q‖z

NzTz

+
3
5

1
1 + x2

iz

q‖i

NiTi

]
, (C.1)

where xab = vTb/vTa.
It is worthwhile relating equation (10) with the frictional

force F‖zi to show how poloidal density asymmetry is linked
with impurity flux (For a more complete derivation, see the
appendix of [26].)

F‖zi = mzνzi

[
−Nz

Ti

eB
I

Lψ
+ B(Nzu − Kz)

]
, (C.2)

where 1/Lψ = 1/Lψi + 1/Lψz with 1/Lψi = ∂ψ ln Pi − 3
2∂ψ

ln Ti and 1/Lψz = − 1
TiZNz

∂ψP⊥z and u is the value related to
the poloidal velocity of the main ions.
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