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Abstract
Trapped ion modes (TIMs) belong to the family of ion temperature gradient (ITG) modes,
which are one of the important ingredients in heat turbulent transport at the ion scale in tokamak
plasmas. A global linear analysis of a reduced gyro-bounce kinetic model for trapped particle
modes is performed, and a spectral method is proposed to solve the dispersion relation.
Importantly, the radial profile of the particle drift velocity is taken into account in the linear
analysis by considering the magnetic flux ψ dependency of the equilibrium Hamiltonian Heq(ψ)
in both the quasi-neutrality equation and equilibrium gyro-bounce averaged distribution
function Feq. Using this spectral method, linear growth rates of TIM instability in the presence
of different temperature profiles and precession frequencies of trapped ions, with an
approximated constant Hamiltonian and the exact ψ dependent equilibrium Hamiltonian, are
investigated. The growth rate depends on the logarithmic gradient of temperature κT , density κn
and equilibrium Hamiltonian κΛ. With the exact ψ dependent Hamiltonian, the growth rates and
potential profiles are modified significantly, compared to the cases with an approximated
constant Hamiltonian. All the results from the global linear analysis agree with a
semi-Lagrangian based linear Vlasov solver with good accuracy. This spectral method is very
fast and requires much less computation resources compared to a linear version of the
Vlasov-solver based on a semi-Lagrangian scheme.

Keywords: linear stability analysis, electrostatic turbulence, spectral method,
gyrokinetic theory and simulation, turbulence in tokamak, trapped ion mode instability,
drift wave turbulence

(Some figures may appear in colour only in the online journal)

1. Introduction

Low frequency and low wavenumber turbulence, which is
mainly generated by the ion temperature gradient (ITG) [1–3]
and trapped electron mode (TEM) [4, 5] instabilities, plays
a dominant role in the anomalous radial energy and particle

∗
Author to whom any correspondence should be addressed.

transport in magnetically confined fusion plasmas. The ITG
is an important ingredient in anomalous ion heat transport
in the tokamak, whereas TEM turbulence drives electron
particles and heat transport. ITG-driven modes are frequently
observed and relevant in tokamak plasma experiments [6, 7].
The trapped ion mode (TIM) belongs to this family of ITG
modes, and is driven by the resonant motion of trapped ions
[8]. The trapped ion instability is characterized by frequen-
cies of the order of the trapped ion precession frequency and
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radial scales of the order of several banana widths. Although
TIMs have lower frequency and a longer wavelength com-
pared to TEMs, the TIM has similar physical mechanisms to
the TEM in the linear regime. Both the TIM and TEM are
driven by precession frequencies of ions and electrons respect-
ively, and are generated in the presence of ion and electron
equilibrium gradients respectively [9, 10]. However, in the
nonlinear regime, they depart from each other due to differ-
ent responses of zonal flows [11–13]. It is essential to prop-
erly estimate the linear growth rate of these trapped-particle
instabilities to understand their influence on nonlinear satur-
ation, the turbulent nature of the system, and the associated
transport. Although the TEM is more directly relevant to toka-
mak turbulence and transport, the TIM in numerical simulation
is much more tractable and shares essential similarities with
the TEM in the linear phase. Therefore, here we focus on the
TIM instability.

During last few decades, ion turbulence in magnet-
ically confined plasmas has been intensively studied in
fluid simulations [14–16], the fluid-kinetic hybrid elec-
tron model for studying low frequency electro-magnetic
turbulence [17], particle-in-cell based gyrokinetic simulations
[18–20], continuum Vlasov approach gyrokinetic simula-
tions in the Eulerian grid [21], δf-particle-in-cell based sim-
ulations for bounce-averaged kinetic equations obtained by
phase-space Lagrangian Lie-perturbation theory [22, 23],
and semi-Lagrangian based reduced bounce averaged gyro-
kinetic simulations [8, 9, 24]. However, a kinetic model is
necessary to capture the kinetic features of TIMs, and a
full five-dimension (5D) gyrokinetic model demands more
computer resources. We consider a reduced four-dimension
(4D) gyro-kinetic model with averaging over gyro-motion
and the banana-orbit motion, and the adiabatic response
of passing particles [8]. This allows us to study the TIM
instability, driven through the resonant interactions of trapped
ions with a wave, separately from the ITG instability,
which is generated in the presence of an ion pressure
gradient.

The TIM instability is driven by the ITG ∇⊥Ti and ∇B
drift. In the unfavorable curvature region of a tokamak, the
temperature gradient is aligned with the magnetic field gradi-
ent; particles in the lower temperature region drift more slowly
than in the higher temperature region, which yields a charge
separation in the presence of a perturbed density profile. The
electric field generated by this charge separation creates an
E×B drift motion, which enhances the initial perturbation,
hence leading to an instability. Although the nonlinear evol-
ution of this TIM instability is interesting in the context of
turbulent transport, it is first worth studying the linear proper-
ties of this instability. A local-linear analysis of TIM instabil-
ity using this reduced gyro-kinetic model was reported by
Drouot et al [9], where the values of all relevant paramet-
ers were considered at a particular radial location. The linear
version of the simulation code TERESA [8, 25, 26], which
is based on a semi-Lagrangian method, is able to solve the
modeled equations in the linear limit with radial profiles of
all relevant parameters [27]. Here, we present an alternative
global-linear analysis by solving the modeled equations of

this reduced gyro-kinetic model in the linear limit using a
spectral method [28, 29], which takes into account the radial
profiles of all relevant parameters, while saving a lot of com-
putational resources compared to the linear version of the
TERESA code.

Moreover, until now, the TIM instability, and its growth
rate in the presence of different temperature profiles and vari-
ations in precession frequency have been studied with the
assumptions that the temperature profile varies linearly with ψ
and that the precession frequency remains constant through-
out the simulation box, which is a good approximation for
a simulation region, situated sufficiently far from the edge
(i.e. the last closed flux surface (LCFS) in our model) and
the core region of a tokamak. Here, using this solver, based
on a spectral method, we have studied the effects on the TIM
instability of different temperature profiles Ti(ψ), and preces-
sion frequency profiles ΩD(ψ,κ) as a function of the mag-
netic flux surface ψ and trapping parameter κ, which is asso-
ciated with the pitch angle variation of trapped particles. All
the temperature and precession frequency profiles are rel-
evant to different experimental observations. Depending on
the temperature profiles and precession frequency values, we
found different growth rates of the TIM instability and differ-
ent potential solutions of the system, which are significantly
different from the previous local linear analysis results [9].
Additionally, for incorporating the variation of particles drift
velocity with magnetic flux ψ, we have modified the previ-
ous gyro-bounce averaged kinetic model by introducing the ψ
dependency of the equilibrium Hamiltonian Heq in the quasi-
neutrality equation and the equilibrium distribution function,
which was neglected in the previous model where the equilib-
rium Hamiltonian was approximated by the energy E of the
particles: Heq ≈ E [25]. This new modification changes the
growth-rate profile of TIM instability, and changes the poten-
tial solution of the system. The growth rate depends on the
logarithmic gradients of temperature, density and equilibrium
Hamiltonian, respectively κT , κn and κΛ. All the results from
this spectral method are successfully compared with the new
linear version of TERESA, which incorporates the ψ and κ
dependency of precession frequency. Therefore, this newly
proposed method for global linear analysis of TIM instability,
and the associated results help us to understand the threshold-
/beginning of turbulent transport in the tokamak by TIMs, and
also explain possible dominant modes of this instability in a
nonlinear regime.

Our paper is organized as follows. Section 2 presents the
bounce-averaged gyrokinetic model, where a brief description
of the previous nonlinear model, along with crucial upgrades,
are discussed. The formulation of global linear analysis of this
nonlinear model is also presented in this section. Section 3
presents a numerical solver based on the spectral method for
solving the dispersion relation, which is derived from global
linear analysis. The effect of different temperature profiles
and precession frequency profiles on the TIM instability in
the limit Heq ≈ E is discussed in section 4. In section 5, the
effect of the inverse gradient length of equilibrium Hamilto-
nian κΛ, on the TIM instability is presented. Section 6 presents
the conclusions.
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2. The bounce-averaged gyrokinetic model and its
modifications due to exact Hamiltonian (H(ψ,κ))

An electrostatic reduced collisionless bounce-averaged
gyrokinetic model was developed by Depret, Sarazin and
Darmet [8, 9, 25, 26]. We adopt this model to study the stabil-
ity of TIMs. In this model, the system evolves on a timescale
of the order of the trapped particle precession frequency ωD,
which allows filtering out the large frequencies ωc (cyclotron
frequency) and ωb (bounce frequency around banana orbit)
(ωD ≪ ωb ≪ ωc), and simplifies the effect of length scales
ρc (gyro-radius) and δb (banana width). The dynamics of the
gyro and bounce averaged trapped particles or banana center
distribution function f s is determined by the kinetic Vlasov
equation,

∂fs
∂t

− [J0,sϕ, fs]α,ψ +
ΩD(ψ,κ)E

Zs

∂fs
∂α

= 0 (1)

where ϕ is the electrostatic potential. Zs is the charge num-
ber of the species. [· · · ]α,ψ is the Poisson bracket in the phase
space of toroidal precession angle α and poloidal magnetic
flux ψ (ψ ∼−r2, is used as a radial co-ordinate, where r is
the radius of the tokamak). The magnetic flux-function is cal-
culated from the integration ψ(r)∼−Bmin

´ r
0

r
q0
dr, where the

negative sign stems from the convention that the direction of
poloidal magnetic field Bθ and the normal direction of the
internal poloidal surface element are opposite to each other.
Then, ψ is shifted and normalized such that ψ̂ is always posit-
ive, and ψ̂ ∈ [0,1] corresponds to a limited radial extent of the
tokamak with ψ̂ = 0 being associated with the edge, toward
the LCFS, and ψ̂ = 1 being associated with the core, toward
the hottest central region of the tokamak. This model is not
valid inside the open field line regions, where most of the tra-
jectories intercept plasma-facing components. The normaliz-
ation of ψ and other essential physical quantities are given in
table 1, where dimensionless normalized quantities are noted
with hat. However, in the main text, the hat notation is omitted
for clarity. EΩD/Zs = ωd,s is the energy dependent precession
frequency of species s,

ωd,s =
q(r)
r

E
qsBminR0

ω̄d, (2)

where q, and R0 are the safety factor, and major radius of
the tokamak, respectively. qs is the electric charge of the spe-
cies s, Bmin is the minimal strength of the magnetic field on
a field line, E≡ 1

2msv2G∥ +µBG is the particle kinetic energy,

µ≡ msv
2
⊥

2BG
is the magnetic moment, where subscript G refers to

the quantities computed at the position of the guiding center,
and

ω̄d =
2E(κ2)
K(κ2)

− 1+ 4s0(r)

(
E(κ2)
K(κ2)

+κ2 − 1

)
, (3)

where κ=
√

1−λ
2ελ is the trapping parameter which can vary

between 0 (for deeply trapped particles) to 1 (at separatrix for
a barely trapped particle). ε= a/R0 is the inverse of the aspect

Table 1. Normalization of the plasma parameters. Physical
quantities are noted without a hat, and dimensionless quantities are
noted with a hat. Here ωd,0 = q0T0/(er0R0B0) is a typical
precession frequency of a strongly trapped ion at E= T0. n0 and T0

are arbitrary normalizing ion density and temperature such that
n̂s = T̂= 1 at ψ̂ = 0. The quantity Lψ is the radial size of the
simulation box in the magnetic flux unit. The minor radius a, the
Larmor radius ρc0, and the banana width δb are all expressed in
units of ψ. However, in the main text, the hat notation is omitted for
clarity.

Quantity e.g. Normalization

Time t, ω−1 t̂= ωd,0t
Poloidal magnetic flux ψ, a, ρc0, δb ψ̂(r) = ψ(r)−ψ(a)

Lψ

Electric potential ϕ ϕ̂= ϕ/(ωd,0Lψ)
Energy E Ê= E/T0
Density ns n̂s = ns/n0
Temperature T T̂= T/T0
Distribution function f s, Feq f̂s = 1

n0

( 2π T0
m

)3/2
fs

ratio of the tokamak, a is the minor radius of the tokamak, and
for a tokamak with a large aspect ratio, usually, the quantity
ε< 1. λ= µBmin(ψ)/E is the pitch angle, s0 = r

q(r)
dq
dr is the

magnetic shear, andK(κ2) and E(κ2) are the complete elliptic
functions of the first and second kind, respectively. The oper-
ator J0,s performs two successive averages: the gyro-average
and the bounce-average, which are the average over the cyclo-
tron motion and the banana motion, respectively for the spe-
cies s—these are (according to the ‘Padé’ expression [25]).

J0,s =

(
1− E

Teq,s(0)

δ2b0,s
4
∂2ψ

)−1(
1− E

Teq,s(0)

q2ρ2c0,s
4L2ψ

∂2α

)−1

,

(4)

where ρc0,s =
msv⊥
qsB

and δb0,s = qρc0,s/
√
ε are the Larmor

radius and the banana width (in unit of ψ) computed at tem-
perature T0. Teq,s(0) is the equilibrium temperature of species
s at ψ= 0.

Self-consistency is ensured by a quasi-neutrality constraint,
including a polarization term ∆̄sϕ, where ∆̄ is a non-isotropic
Laplacian operator,

∆̄s =

(
qρc0,s
Lψ

)2
∂2

∂α2
+ δ2b,s

∂2

∂ψ2
(5)

where Lψ = aR0Bθ is the radial length of the simulation box in
units of ψ. The quasi-neutrality equation with the approxim-
ation Heq,s(ψ) = E(1+ΩDψ)≈ E reads as follows [25, 30],

2√
πneq(0)

∑
s

Zs

ˆ 1

0
κK(κ2)dκ

ˆ ∞

0
J0,s fs

√
EdE

=
∑
s

eZ2s
Teq,s(0)

[
1− ft
ft

(ϕ − ϵϕ,s⟨ϕ⟩α)− ∆̄sϕ

]
, (6)

where, neq(0) is the equilibrium density at ψ= 0, ft = 2
√
2ε
π is

the fraction of trapped particles, which scales as
√
r, whereas

3



Plasma Phys. Control. Fusion 65 (2023) 055001 D Mandal et al

we consider a constant f t. ⟨. . .⟩α corresponds to the aver-
age on the angle α. Here passing particles are treated quasi-
adiabatically. In all the previous studies of trapped particle
modes ′ instability [8, 25, 26], the gyro-bounce averaged kin-
etic model was simplified by considering the equilibrium
Hamiltonian Heq(ψ) = E(1+ΩDψ)≈ E, which was used to
derive the quasi-neutrality equation (6). This approximation is
valid only at ψ= 0 and/or ΩD ≪ 1. The exact expression for
the equilibrium Hamiltonian is,

Heq(ψ,κ) = E

(
1+
ˆ ψ

0
ΩD(ψ̃,κ)dψ̃

)
= EΛD(ψ,κ), (7)

where ΛD(ψ,κ) = 1+
´
ΩD(ψ̃,κ)dψ̃, with ψ̃ is a variable of

integration. In the previous derivation of the gyro-bounce aver-
aged Vlasov equation (1) the ψ derivative of the equilibrium
Hamiltonian was considered as dHeq

dψ = EΩD, which remains
unchanged for this new Hamiltonian equation (7). There-
fore, the expression for the gyro-bounce averaged Vlasov
equation (1) remains unchanged. With this new equilibrium
Hamiltonian equation (7) the elementary volume in the phase-
space can be written as d3v= 4π

√
2m−3/2

√
EΛ3/2

D dE dλ
4ΩD

. For
simplicity, we consider that the term ∆̄ϕ associated with
the polarization in the quasi-neutrality equation (6) remains
unchanged under this new modification in the equilibrium
Hamiltonian. By keeping unchanged the right-hand side of
the previous quasi-neutrality equation (6) and using the modi-
fied expression of elementary volume d3v for the integration of
the gyro-bounce averaged distribution f s, the quasi-neutrality
equation can be written as

2ΛD(ψ,κ)
3/2

√
πneq(0)

∑
s

Zs

ˆ 1

0
κK(κ2)dκ

ˆ ∞

0
J0,s fs

√
EdE

=
∑
s

eZ2s
Teq,s(0)

[
1− ft
ft

(ϕ − ϵϕ,s⟨ϕ⟩α)− ∆̄sϕ

]
.

(8)

Therefore there is an additional multiplication term
ΛD(ψ,κ)

3/2 that arises in the left-hand side of the previ-
ous quasi-neutrality condition equation (6). In this model,
the gyro-bounce averaged distribution function f s bears four
dimensions (α,ψ,E,κ), and in a further reduced limit of a
single κ value it reduces to a three-dimensional (3D) model.

2.1. Global linearized model

Considering an initial very small amplitude perturbation of
gyro-bounce averaged distribution fs = Feq,s+ f̃s and potential
ϕ = ϕ̃ in Fourier space as f̃s =

∑
n,ω fs,n,ω(ψ,E,κ)exp{i(nα−

ωt)} and ϕ̃=
∑

n,ω ϕn,ω(ψ)exp{i(nα−ωt)}, then neglecting

the higher order nonlinear terms
[
J0,sϕ̃, f̃s

]
α,ψ

, the linearized

form of the Vlasov equation can be written as,

∂ f̃s
∂t

−
[
J0,sϕ̃,Feq,s

]
α,ψ

+
ΩDE
Zs

∂ f̃s
∂α

= 0. (9)

n and ω are the mode number (along α), and the angular fre-
quency of the Fourier modes, respectively. Here, we consider

the normalized gyro-bounce averaged equilibrium distribution
Feq,s is Maxwellian energy distribution, which is independent
of (α, t). Using the new equilibrium Hamiltonian Feq,s can be
written as:

Feq,s(ψ,E,κ) =
neq,s(ψ)

T3/2eq,s(ψ)
exp

(
−EΛD(ψ,κ)

Teq,s(ψ)

)
, (10)

where Teq,s(ψ) and neq,s(ψ) are the temperature and density
profiles of the equilibrium distribution function of species s,
respectively. In this case, the integration of Feq over the velo-
city space d3v leads to neq(ψ). Hereafter, we denote Teq(ψ)
as T(ψ) and neq,s(ψ) as ns(ψ). The term EΛD allows us to
incorporate the radial variation of particle drift velocity. After
substituting f̃s, ϕ̃ and Feq,s in equation (9), the solution of the
Vlasov equation in Fourier space becomes,

fn,ω =
κn(ψ)+κT(ψ)

(
EΛD(ψ)
T(ψ) − 3

2

)
− EΛD

T(ψ)κΛ(ψ)

Z−1
s ΩD(ψ,κ)E− ω

n

×{J0,n,sϕn,ω(ψ)}Feq,s(ψ,E,κ)

(11)

where κn(ψ) =
1

ns(ψ)
dns
dψ , κT(ψ) =

1
Ts(ψ)

dTs
dψ and κΛ(ψ) =

1
ΛD(ψ)

dΛD
dψ = ΩD(ψ)

ΛD(ψ)
are the logarithmic gradients of dens-

ity, temperature and equilibrium Hamiltonian Heq(ψ),
respectively.

Considering both electron and ion contributions, the quasi-
neutrality condition denoted in equation (8) can be written as,

√
π

2Ti(0)

[
Cad(ϕn,ω − ϵϕ⟨ϕ⟩α)−Cpol∆̄ϕn,ω

]
=Nn,i−Nn,e,

Nn,i =
Λ
3/2
D

ni(0)

ˆ 1

0

ˆ ∞

0
J0,i fi,n,ω(ψ,E,κ)

√
EdEκK(κ2)dκ,

Nn,e = τ
Λ
3/2
D

ne(0)

ˆ 1

0

ˆ ∞

0
J0,e fe,n,ω(ψ,E,κ)

√
EdEκK(κ2)dκ,

(12)

where τ = Ti
Te

∣∣
ψ=0

,Cpol =
qiω0Lψ
T0

,Cad =
1−ft
ft
(1− τ)Cpol, ϵϕ =

ϵϕ,i+τϵϕ,e
1+τ and ∆̄ϕ = ∆̄iϕ + τ∆̄eϕ. In the limit of a con-

stant pitch-angle, the value of ΩD is constant along κ,
then the κ integration in equation (12) can be simplified
as,
´ 1
0 κK(κ2)dκ= 1. Substituting the value of fn,ω from

equation (11) in equation (12), the expression of Ns becomes

Nn =
ΛD(ψ)

3/2

ns(0)

ˆ ∞

0

√
EJ0,n

[
ns(ψ)
T3/2(ψ)

exp

(
− EΛD

T(ψ)

)

×
κn(ψ)+κT(ψ)

(
EΛD
T(ψ)

− 3
2

)
−κΛ(ψ)

EΛD
T(ψ)

Z−1ΩD(ψ)(E−χ)
(J0,nϕn,ω)

]
dE,

(13)

where χ = ω
nZ−1ΩD(ψ)

, and ω have both real and imaginary
parts ω = ωr+ iγ. Due to the term (E−χs) in the denom-
inator, there is a possibility of resonance between wave and

4
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particle motion. For ions Zi is positive, therefore the resonance
occurs only when the phase velocity of the wave has the same
sign as the ion precession drift (i.e. ω> 0). By substituting ∆̄s

from equation (5) in the left-hand side of the quasi-neutrality
condition shown in equation (12), we define the differential
operator

Cn =

√
π

2Ti(0)

[
Cad(1+ ϵϕδn,0)

+Cpol

{
(ρ∗i

2 + τρ∗e
2)(−n2)− (δ2bi+ τδ2be)

∂2

∂ψ2

}]
,

(14)

where ρ∗s =
qρc0,s
Lψ

, and δn,0 is Kronecker delta with the value 1
for n= 0 and for n ̸= 0, it is 0. Therefore, the dispersion rela-
tion becomes,

Cnϕn,ω =N ∗
n,iϕn,ω −N ∗

n,eϕn,ω (15)

where N ∗
n,s =

Nn,s

ϕn,ω
is actually a differential operator

(equations (4) and (13)) acting on ϕn,ω. We will come back to
this issue in section 3. Hereafter, we remove the subscript ω
from ϕn,ω, and denote it as ϕn, because the linear dispersion
relates ω to n values. By substituting the expression of Cn in
equation (15), one can derive a second order linear differential
equation of ϕn,ω as,

d2ϕn
dψ2

+Qn(ψ)ϕn = 0,

Qn(ψ) =
N ∗
n,i−N ∗

n,e−
√
π

2Ti(0)

[
Cad +Cpol(ρ

∗
i
2 + τρ∗e

2)n2
]

√
π

2Ti(0)
Cpol(δbi

2 + τδbe
2)

.

(16)

Considering Ti(0) = T0, ni(0) = ne(0) = n0, in a normal-
ized unit, these become Ti(0) = ns(0) = 1. Here we study
the modes for which n ̸= 0, therefore the term ϵϕδn,0 in
equation (14) vanishes. For simplicity, to study the TIM
instability specifically, we will neglect the electron perturba-
tion f̃e = 0 which leads toN ∗

e = 0. However, the same method
is applicable to TEM instability by settingN ∗

i = 0 andN ∗
e ̸=

0. Moreover, for τ 6 1, ρ∗i
2 ≫ ρ∗e

2 and δ2bi ≫ δ2be. Therefore,
after neglecting those terms associated with electron contribu-
tion and substituting Teq,i = 1 in equation (16), the modified
expression for Qn(ψ) becomes,

Qn(ψ) =
N ∗
n,i−

√
π
2

[
Cad +Cpolρ

∗
i
2n2
]

√
π
2 Cpolδbi

2
. (17)

The contributions of the density gradient, temperature gradi-
ent and the gradient in the equilibrium Hamiltonian are con-
tained in the expression ofN ∗

n . Due to the term−κΛ, while the
increase in the logarithmic gradients of temperature and dens-
ity κT and κn help to enhance the TIM instability, the logar-
ithmic gradient of equilibrium Hamiltonian κΛ helps to stabil-
ize the TIM instability. In the limit Heq ≈ E, the term κΛ = 0
and ΛD = 1, in equation (13). Therefore, the growth rate γ of

all the modes n of TIM instability for the new modified equi-
libriumHamiltonianHeq(ψ,κ,E), will be significantly smaller
compared to the case with the limit Heq ≈ E. The dispersion
relation of the TIM mode instability in the limit of Heq ≈ E is
presented in the appendix. Since the solution in Fourier space
equation (11) fn,ω = 0 for n= 0, the linear analysis is valid
only for the mode numbers n> 0. However, the n= 0 mode
is linearly stable; it cannot extract free energy from the equi-
librium gradients.

2.2. Local linearized analysis

The local linear stability analysis of this reduced gyro-bounce
averaged model with the new modified equilibrium Hamilto-
nian can be obtained by expanding Feq,s(ψ,κ,E) equation (10)
up to the first order ofψ aroundψ= 0, and substituting ∂2ψϕ =

−k2ϕ (with k= π) in the dispersion relation, which leads to
the new simplified dispersion relation as, Cn−N ∗

n,i = 0. From
this, using the Plemelj formula [31], the threshold frequency
value of the real part of frequency ωr for TIM instability can
be derived as:

ωnew
r =

(
3
2κT0 −κn0

κT0 −κΛ0

)
ΩD0

ΛD
T0n, (18)

where the subscript ‘0’ denotes the variables ′ value at ψ= 0.
Here, we restrict the analysis to the case of resonant interac-
tions only, i.e. ωr > 0; hence, equation (18) is valid for the
cases with (3κT/2−κn)/(κT−κΛ)> 0. The threshold value
of κT for the instability can be written as

κnewT,th =
CnΩD0

ΛD0
´∞
0 J20,n exp(−ξ)

√
ξdξ

+κΛ0 (19)

where ξ = EΛD
T . The threshold values of ωr and κT

equations (A5) and (A6) in the limit of Heq ≈ E [9] can be
recovered by substitutingΛD = 1 and κΛ = 0 in equations (18)
and (19). The relation between these two threshold κT
values is

κnewT,th =
κT,th
ΛD0

+κΛ0, (20)

where κnewT,th and κT,th are the threshold values of κT for TIM
instability in the case with κΛ and without κΛ, respectively.
For ΛD0 ≈ 1, κnewT,th ≫ κT,th, which suggests that a relatively
strong gradient in the temperature profile is required in order
to obtain TIM instability, compared to the case with Heq ≈ E.
In case of adiabatic electron response there is a non-resonant
branch of TIM for χ< 0 [25]. But here we are focusing only
on the resonant branch of TIM, for which χ> 0.

In the present study, unlike the local linear analysis, instead
of Taylor expansion of Feq,s around ψ= 0, a full ψ dependent
Maxwellian distribution for the equilibrium gyro-bounce aver-
aged particle distribution Feq,a(ψ,κ,E) is considered. There-
fore, using this global linear analysis, the effects of any type
of temperature, density and precession frequency profiles on
the stability of TIMs can be investigated. In the next section,
we will solve the differential equation of ϕ equation (16) with

5
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the expression for Qn from equation (17) using the spectral
method.

3. Global linear analysis: spectral method

The Qn function in equation (17) depends on ψ in an intricate
manner. However, in the limit of local linear analysis [9], Qn

is independent of ψ. Therefore −Qn becomes the eigenvalue
of the operator ∂2ψ in equation (16). However, in our global
linear analysis, due to the full Maxwellian distribution Feq, it
is impossible to eliminate the ψ dependency in Qn, i.e.−Qn is
no more an eigenvalue of ∂2ψ. Here we use a spectral approach
[28, 29, 32] to solve equation (16). We can consider our co-
ordinate system (ψ,α) as a polar co-ordinate system with ψ as
radial axis and α as angular axis. If we consider the solution
ϕ(ψ,α) as a scalar analytic function in the region 06 ψ 6 1,
according to the theorem-1 of the page 374 in [32], using a
spectral approach the solution ϕ(ψ,α) can be expanded as:

ϕ(ψ,α) =
∞∑

n=−∞
ψ|n|

∞∑
m=1

ϕ̂n,mFm(ψ)exp(inα) (21)

where Fm(ψ) is an even power function of ψ, and the sum
index m has values m= 1,2 · · ·∞. In practice, a truncation is
performed so that it is limited to the first M number functions
of Fm. In equation (16) all the differentiation in α is taken in
Fourier-space. Therefore, according to the spectral approach
from equation (21) the solution of equation (16) ϕn(ψ) can be
expressed as:

ϕn(ψ) = ψ|n|
M∑

m=1

ϕ̂n,mFm(ψ). (22)

The boundary conditions for ϕn(ψ) in equation (16) are
ϕ|ψ=0 = 0 and ϕ|ψ=1 = 0. Our first choice for Fm was Fm =
(1−ψ2)ψ2(m−1), but this choice gives poorly conditioned
matrices. For good condition matrices, the coefficients ϕ̂n,m
go down towards zero exponentially with increasing m and
at m=M, ϕ̂n,M ≈ 0. Then, we consider orthogonal polynomi-
als, Chebyshev polynomials of first kind T2(m−1)(ψ), for con-
structing Fm as:

Fm(ψ) = (1−ψ2)T2(m−1)(ψ) (23)

which were used for studying the collisional drift wave and
ITG instabilities in a cylindrical plasma, using the spectral
method [28, 29]. However, in the case of TIM instability,
we found that this choice of function gives good condition
matrices for lower values of n. For higher values of n, the coef-
ficients ϕ̂n,m do not go down towards zero exponentially with
increasing m. Then, we choose n= 1 for the factor ψ|n|, in the
expansion function equation (22) and the dependency of the
solution on the mode-number n is entirely determined by the
expressionQn in equation (16).With this new choice, the coef-
ficients ϕ̂n,m go down towards zero exponentially with increas-
ing m. Moreover, we have checked that using this new choice
of expansion function, one can recover the solutions of the col-
lisional drift wave instability study, as given in [28, 29].

By defining Cm = ψFm the expression of ϕn(ψ) can be
written as,

ϕn(ψ) =
M∑

m=1

ϕ̂n,mCm. (24)

Here Cm = ψ(1−ψ2)T2(m−1)(ψ). Using this new choice of
ϕn(ψ) rather good conditioning properties of matrices are
obtained for large values of n in our study. Substituting the
value of ϕ in equation (16) we get,

M∑
m=1

ϕ̂n,m
d2Cm(ψ)
dψ2

=−
M∑

m=1

ϕ̂n,mQn(ψ)Cm(ψ), (25)

where m is the index of the spectral function Cm, and n is the
wave number of TIM instability along the toroidal precession
angle α. The second-order differential equation (25) is solved
numerically. By proceeding this way, equation (25) is only
solved at the points ψ, where its left hand side is vanishing for
the first dropped higher order term of the expansion, namely
the term CM+1(ψ) = ψ(1−ψ2)T2M(ψ). Those ψ values are
called the collocation points, which are defined by theM zeros
of the Chebyshev polynomial T2M(ψ) situated in the interval

06 ψ 6 1, i.e. ψl = cos
(

(2l−1)π
4M

)
for l ∈ {1, . . . ,M}. Since

CM+1 vanishes at these ψ locations, for J0 = 1 the right hand
side of equation (25) also vanishes at m=M+ 1. Moreover,
for gyro-bounce average operator J0 according to equation (4)
we solve the equation (25) iteratively where the operator N ∗

n
inside Qn(ψ) is applied on a solution ϕn−∆n(ψ) which is
obtained from the previous iteration. Therefore, at any itera-
tion Qn(ψ) is a known function of ψ; it does not directly oper-
ate on Cm. Hence, at the collocation points the right hand side
of equation (25) vanishes for the m= (M+ 1). To minimize
the truncation error, the discretization in ψ is considered at
those collocation points. We will explain this iteration method
at the end of this section. For each value of wave number n
along α, equation (25) is evaluated at these collocation points
and yields the matrix problem,

MDϕ̂n =−MQϕ̂n (26)

where ϕ̂n =

 ϕ̂n,1
...

ϕ̂n,M

 is the vector representing the solution,

and the matrices are,

(MD)l,m =
d2

dψ2
l

Cm(ψl), (27)

(MQ)l,m = Qn(ψl)Cm(ψl), (28)

with l,m ∈ {1, . . . ,M}. We then scan the (ωr,γ) plane (where
ω = ωr+ iγ), and search for values of ω such that one eigen-
value of the matrixM=MD+MQ vanishes within machine
precision. During this search, there is no restriction on the
range of ωr values, and we search only for positive γ values.
For this purpose, a method that finds the minimum of a scalar
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function of several variables, starting at an initial guess value,
and which iterates using the simplex search method [33] is
used. Then, using the eigenvector of matrixM associated with
this smallest eigenvalue, the electric potential ϕn(ψ) can be
constructed using equation (24). The solution ϕn(ψ) has both
real and imaginary parts. The spectral-convergence or rate of
change of the coefficient ϕ̂n,m values with different M values
depends on the nature of the matrix MQ. Usually, accept-
able smooth ϕ̂n,ms follows exponentially decaying functions
withm, i.e. ϕ̂n,m = ϕ̂n,0 exp(−|β|m), where β is a constant. For
different initial guess values, the minimum searching method
can converge toward different values of ω. Among these solu-
tions, one finds the couple (ωr,γ) for which the instability
growth rate γ is maximum. We will take that particular set as
a solution (ωr,γ). To generate the curve (ωr versus n) and (γ
versus n) we start from mode n= 1 and search for the highest
value of growth rate, by choosing different initial guess val-
ues as ωr0 ∈ [0,3ωrL] and γ0 ∈ [0,ωrL] (since ωr > γ), and with
the intervals ∆ωr0 = 0.1ωrL,∆γ0 = 0.01ωrL, where ωrL is the
threshold value of ωr obtained from the local linear analysis
equation (18). In fact, the range and the intervals for the initial
guess values depend on the nature of the instability, i.e., on
the matrixMQ. After finding the highest value of growth rate
for n= 1, increase the n value slowly with a step ∆n= 0.1.
Although the mode numbers n along α, are integer numbers,
there is no such restriction on n for solving the differential
equation (25) for fractional values of n. In the search method,
we choose the solution ω of n−∆n step, as an initial guess
(ωr0,γ0) value to search the solution for mode number n. Here,
we consider that the (ωr versus n) and (γ versus n) profiles
vary smoothly with n, such that a small change in n, changes
theMmatrix by a small amount, and helps to find-out the val-
ues (ωr,γ) close to the initial guess value (ωr0,γ0), and keep
the solutions within the same branch with the highest growth
rate. A larger step in ∆n in the searching method, may lead
to a departure of the solution (ωr,ωi) from the branch with
the highest growth rate. However, if the solution departs from
any particular branch, i.e. if it leads to a sudden change in the
potential profile for two consecutive n values, then one has to
decrease the ∆n value.

The main difficulty for solving equation (16) using the
spectral method is to construct the Qn(ψ) matrix. To calcu-
late N ∗

n,i, the gyro-bounce average operator J0,n,i is applied
to the potential solution ϕn in equation (13), which is an
unknown quantity of equation (16). Therefore, we will solve
equation (16) for ϕ iteratively. Moreover, to calculate the gyro-
bounce average of any function F(ψ) using the Padé expres-
sion equation (4), we solve the differential equation,(

1− E
T(0)

δ2b0,s
4

d2

dψ2

)
¯̄F(ψ) =

(
1+

E
T(0)

ρ∗2

4
n2
)−1

F(ψ),

(29)

where,F is a known function, on which the gyro-bounce aver-
age operator J0 is applied and generates the gyro-bounce aver-
aged quantity ¯̄F . We solve equation (29), using the spectral

method with the boundary condition ¯̄F = 0 at ψ= 0 and ψ =
Lψ = 1. Finally, equation (16) is solved iteratively, by cal-
culating Nn for the ϕn solution from the previous iteration.
For the first iteration with mode number n, the potential solu-
tion ϕ(n−∆n)(ψ) of the mode n−∆n is taken into account to
calculate Nn. However, for the calculation with mode n= 1,
at the beginning (first iteration) the potential solution is not
available, therefore at first, equation (16) is solved using the
spectral method for the case with J0,s = 1 and constructs the
potential using equation (24). The gyro-bounce average oper-
ator equation (4) is then applied on that potential solution for
calculating Nn at the first iteration for n= 1, and constructs
the solution ϕn. In the next iteration, this ϕn is used to calcu-
late Nn and update the solution ϕn. After each iteration, ∆ϕn,
the difference in the solution ϕn from its value at the previ-
ous iteration, is calculated and this iteration method continues
until the accuracy limit |∆ϕn| ∼ 10−3is achieved.

Although this solver based on the spectral method is quite
robust for studying the linear stability of the TIM for dif-
ferent dependent parameters (temperature, density and pre-
cession frequency) profiles, it has some limitations. We have
observed that this spectralmethod can calculate the (γ,ωr) pre-
cisely for temperature profiles having κT < 10κT,th, and bey-
ond that the method becomes unstable, and even a very small
change in ∆n< 0.001 departs the solution from the expec-
ted branch with the highest growth rate. κT,th is the threshold
value of instability which is given by equations (19) and (A6).
For Heq ≈ E and κn = 0, the threshold value is κT,th ∼ 0.12
for the mode number n= 1 [9]. Moreover, this method can be
applied only for the potential solutions which have zero val-
ues at the boundary (ϕ= 0 at ψ= 0 and ψ= 1). In the next
two sections 4 and 5, this spectral technique is used to study
the effect of temperature and precession frequency profiles
(having κT,max < 10κT,th) on TIM instability for the case in
the limit Heq ≈ E and for the exact equilibrium Hamiltonian
Heq(ψ,κ,E). κT,max is the maximum value of a κT(ψ) profile.

4. Effect of temperature and precession frequency
on TIM instability in the limit Heq ≈ E

In this section, we consider the case with the limitHeq ≈ E and
present the effect of different temperature profiles, and differ-
ent precessional frequency profiles ΩD(ψ,κ), corresponding
to different safety factor profiles, on the TIM instability. We
can substitute ΛD = 1 and κΛ = 0 in the equation (13) and get
the required expression for the Nn equation (A3), in the limit
Heq ≈ E. In this limit, the growth rate mostly depends on the
terms κT and κn in equation (13). Moreover, for all the cases
the results from the global linear analysis are compared with
the linear TERESA simulations. Throughout this paper, we
have considered a flat density profile κn = 0, which prevents
the generation of electron roots of TIM (ωr < 0) with propaga-
tion along the electron diamagnetic direction (appendix of
[34]). Here all the modes are ion roots of the TIM which
propagate along the ion diamagnetic direction. In this sense
the modes are ‘pure-TIM’.

7
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4.1. Different temperature profiles

In this section 4.1 we use four different types of temperature
profiles and a flat density profile κn = 0, and investigate their
effect on the TIM instability. These temperature profiles are
presented as,

T1(ψ) = T0 (1+GTψ)

T2(ψ) = T0 +
GT

2

(
1+L1

[
log

(
cosh

ψ −ψ1

L1

)

− log

(
cosh

ψ − (1−ψ1)

L1

)])
T3(ψ) = T0 exp(GTψ)

T4(ψ) = T0 exp

[
GTRT tanh

ψ2 −ψ2
1 R2

T

]
.

(30)

Here we use the constant parameters T0 = 1, GT = 0.25, L1 =
0.025, ψ1 = 0.2, RT = 0.5 and for the temperature profile T4

we have chosen two different values of ψ1, (0.2 and 0.5).
Figure 1 presents all these five different temperature profiles.
T1(ψ) is the temperature profile with a constant temperature
gradient. T2(ψ) has a constant gradient inside the simulation
domain from 0.26 ψ 6 0.8. The width of this region is con-
trolled by the parameter ψ1 in T2. Near the boundary, the
gradient is zero along the ψ direction. Therefore, there is a
sudden change in gradient at ψ= 0.2 and 0.8. This type of pro-
file with zero gradient at the boundary is used in the TERESA
simulation to prevent numerical instabilities arising from the
boundaries. T3(ψ) is an exponentially increasing temperature
profile. T4(ψ) is a special type of temperature profile which
has zero gradient near the boundary, and inside the box it has
a finite gradient which can be controlled by the parameter ψ1

keepingGT constant. Here, two different values ofψ1 are used:
ψ1 = 0.2 and ψ1 = 0.5. For both values of ψ1 the gradient
changes smoothly from zero to a finite value asψ goes from the
boundary toward the center region. Therefore, this profile has
less-chance to generate numerical instabilities. Temperature Ti
is normalized to T0, and the poloidal magnetic flux is normal-
ized such that ψ= 0 is close to the last-closed flux surface and
ψ= 1 is in the core region of the tokamak. Therefore Ti = 0.9
is associated with the ion temperature 0.9T0. Moreover, for
any particular temperature profile, as an example T1, the core-
most temperature (ψ= 1) is 1.25T0 and the temperature at the
edge (ψ= 0) is T0, so that ψ ∈ [0,1] corresponds to a limited
radial extent of the tokamak where the temperature changes by
only 25%. In tokamak experiments, the ion temperature pro-
file depends on the operation-mode; during L-mode operation
it looks like a bell shaped profile with a flat top near the core
and decreases toward the scrape-off layer region, while during
H-mode operation, due to the generation of an edge transport
barrier, the plasma temperature profile changes significantly.
It is difficult to present the entire temperature profile using a
single function, but the profiles T1, T2, T3 and T4 are some-
what representative of radial sections as we have checked from
different tokamak experiments, e.g., data from JET [3, 35] and
COMPASS [36].

Figure 1. Five different types of temperature profile: T1(ψ) (red
solid line), T2(ψ) (black dashed line), T3(ψ) (blue solid line), T4(ψ)
with ψ1 = 0.2 (green solid line) and T4(ψ) with ψ1 = 0.5 (cyan
solid line). The radial interval in-between ψ= 0 and ψ= 1 covers a
certain radial domain in-between the LCFS and the very core region
of a tokamak, respectively. 99K near ψ= 1: indicates the direction
towards the core region of the tokamak. L99 near ψ= 0: indicates
the direction towards the edge region (LCFS) of the tokamak.

Figure 2. κT =
d logT(ψ)

dψ profiles for the five different temperature
profiles.

Figure 2 presents the κT(ψ) = 1
T(ψ)

dT
dψ profiles for all these

five temperature profiles. The κT profiles change significantly
for all five temperature profiles. The temperature profile T4

with ψ1 = 0.5 and 0.2 has κT profiles with peak values 0.53 at
ψ≈ 0.6 and 0.31 at ψ≈ 0.4, respectively and then gradually
decreases to zero toward the boundaries. The exponential tem-
perature profile T3 has a constant κT . Profiles T1 and T2 have
exactly similar κT profiles, κT ∝ ψ−1 within the region 0.26
ψ 6 0.8, and near the boundaries ψ< 0.2 and ψ> 0.8, κT sud-
denly jumps to zero for T2. Therefore in T2, the TIM instability
arises due to the temperature profile within 0.26 ψ 6 0.8.

4.1.1. J0 = 1 case. Since the case with gyro-bounce average
operator J0 = 1 is numerically the simplest case, we first val-
idate our global linear analysis for the case with J0 = 1 and
with five different temperature profiles. Moreover, for mode

8
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number n= 1, the potential solution from the J0 = 1 case will
be used to calculateNn. The other main parameters which are
used in this study are presented in table 2. The growth rate
γ of TIM instability for different mode numbers n is presen-
ted in figure 3 for all the five temperature profiles. This spec-
tral method is also able to find out the negative growth rates
for the higher mode numbers. Since we are interested only
in the unstable TIMs with positive growth rates (γ > 0), in
all the figures of γ− n profiles, only the modes with γ > 0
are presented. For the temperature profile T4 with ψ1 = 0.5,
the effective temperature gradient and hence the parameter κT
has the highest value compared to other temperature profiles.
Therefore, as expected, the growth rate of the TIM instability
is higher compared to the other cases. For the other temperat-
ure profiles, the growth rate decreases as the effective value of
κT decreases. The growth rate of the highest growing mode for
the temperature profiles T4 with ψ1 = 0.5, T4 with ψ1 = 0.2,
T3, T2 and T1 are 22.5, 10, 8.3, 5.6 and 6.6ω0, respectively,
and the location of the most unstable modes are n≈ 27, 20,
17, 15 and 16, respectively. Therefore, even for the gyro aver-
age operator J0 = 1 case the growth rate of the TIM instabil-
ity strongly depends on the temperature profile, and the mode
with the highest growth rate shifts toward zero with decreasing
value of κT . For low mode numbers, the growth rate increases
with increasing n. At very high n (after the mode with highest
growth rate), the growth rate decreases and goes down to zero
due to the presence of the polarization drift term within the
model, and finally generates a bell-shaped growth-rate profile.
Moreover, the presence of gyro-average operator J0 according
to equation (4), will enhance this effect, which decreases the
growth rate further for higher mode numbers—this is presen-
ted in the next section, 4.1.2. All the growth-rate profiles at
large values of mode-number n, where γ→ 0 and ωr has very
large values (ωr ≫ γ), slightly depart from the expected trend.
The reason for this is that the integration of equation (13) for
calculating Nn is a contour integration, and in the complex
plane the contour/path of the integration depends on the sign
of the imaginary part of χ i.e. γ. Since we are interested in the
modes with γ > 0, we have considered the integration path for
the pole at E= C(ωr+ iγ), where C= (nΩD)

−1. For negative
values of γ and γ= 0 the contours of the integration will be
different because the poles are situated at E= C(ωr− iγ) and
E= Cωr, respectively. One has to take into account these new
contours to get the exact values of growth rate when γ→ 0 and
γ 6 0. However, for higher ωr the phase velocity of the wave
is very high, and the kinetic effect of trapped ions to TIMs is
negligible. Therefore, the growth rate of those modes is left
out of our present study. The dots on the growth-rate curves
present the measured growth rates of the different modes n for
different temperature profiles from the linear TERESA sim-
ulation with J0 = 1. These good agreements of the growth-
rate profiles validate the accuracy of our spectral method to
the semi-Lagrangian based Vlasov simulation results. In order
to generate an entire (γ versus n) curve, our spectral method
based solver takes only 10–15 min for J0 = 1 and 20–30 min
for J0 according to the Padé expression, whereas a serial ver-
sion of the TERESA simulation takes around 16 h. Figure 4
presents the potential solution ϕn(ψ) profiles for n= 1 for

Table 2. Main input parameters used for studies in section 4.1.

δb,i ρc,i Cad Cpol ΩD Teq neq M GT

0.1 0.03 0.1 0.1 1 1 1 50 0.25

Figure 3. Growth rate γ versus mode number n profiles with
J0 = 1, for the five different temperature profiles: T4(ψ) with
ψ1 = 0.5 (cyan line), T4(ψ) with ψ1 = 0.2 (green line), T3(ψ) (blue
line), T1(ψ) (red line) and T2(ψ) (magenta line). The dots denote
the results from the linear TERESA simulation with J0 = 1. Each
set of dots marked by the same color is from a single simulation.

Figure 4. Potential solutions |ϕn(ψ)|/ϕmax for mode n= 1 with
J0 = 1 for the temperature profiles: T4(ψ) with ψ1 = 0.5 (cyan
line), T4(ψ) with ψ1 = 0.2 (green line), T1(ψ) (red line), T2(ψ)
(magenta line), and T3(ψ) (blue line).

the different temperature profiles. Depending on the κT pro-
files, different ϕn(ψ) profiles are generated. Since the potential
solution has both real and imaginary parts, for all the poten-
tial profiles within this paper, we take its absolute values and
then normalize by its maximum value. All the results that
are presented hereafter use the gyro-bounce average operator
according to the Padé expression equation (4).

4.1.2. J0 according to the Padé expression. After valid-
ating the J0 = 1 case, we intend to solve the differential
equation (16) by calculating Nn from equation (A3) with
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Figure 5. γ versus n profiles with J0 equation (4) for the five
different temperature profiles: T4(ψ) with ψ1 = 0.5 (cyan line), and
T4(ψ) with ψ1 = 0.2 (green line), T3(ψ) (blue line), T1(ψ) (red
line) and T2(ψ) (magenta line). The dots denote the results from the
linear TERESA simulation.

the Padé expression for the gyro-bounce average operator J0
equation (4). The gyro-bounce averaged quantity (J0fn and
J0ϕn) is calculated by solving the differential equation (29)
using the spectral method. First J0,nϕn,ω is calculated using
the solution ϕn, calculated from equation (16) by implement-
ing J0 = 1. Then we use this gyro-bounce averaged potential
ϕ̄= J0,nϕn,ω in equation (A2) to construct the particle distri-
bution f n, and finally the gyro-bounce averaged distribution
function f̄n is obtained similarly by solving the differential
equation (29) which is used to calculateNn. Figure 5 presents
the growth rate of different modes n of TIM instability, for
the five different temperatures profiles equation (30). In com-
parison with the previous J0 = 1 cases, the gyro-bounce aver-
aged operator decreases the growth rate γ of the TIM instabil-
ity by a significant amount for all the temperature profiles,
roughly by a factor of two in terms of the highest growth rate.
Also, the modes with the highest growth rate for each temper-
ature profile are different from the previous J0 = 1 case and
they are shifted toward lower mode numbers. Therefore the
gyro-average operator reduces the instability of the TIMs com-
pared to the J0 = 1 case. However, the effect of the variation in
temperature profiles on their growth rate remains unchanged.
Similar to the previous J0 = 1 case, the growth rate of TIMs
depends on the κT value, and the profile T4 with ψ1 = 0.5
generates the highest growth rate, which decreases as the κT
value decreases for the other temperature profiles. Each dot
with different colors on the solid lines presents the growth
rate of different modes n for different temperature profiles
from the linear TERESA simulation using the Padé expres-
sion for the gyro-bounce average operator. Figure 6 presents
the frequency ωr (real part) of different TIMs n for five differ-
ent temperature profiles. For the lower mode numbers n6 10
frequencies ωr are almost similar for all the temperature pro-
files. The black dashed line presentsωr = 3

2nwhich is the solu-
tion of the local linear analysis equation (A5) in the limit of
ψ → 0 [9]. Therefore, the frequencies ωr of TIMs are higher

Figure 6. Real part of TIM frequency ωr versus mode-number n
with J0 equation (4) for five different temperature profiles: T4(ψ)
with ψ1 = 0.5 (cyan line), T4(ψ) with ψ1 = 0.2 (dashed green line),
T2(ψ) (black line), T1(ψ) (red line) and T3(ψ) (blue line). The red+
marker presents the linear TERESA simulation results for T4 with
ψ1 = 0.5. The dashed black line presents ωr = 3/2n, and the black
dotted line presents ωr = 2n.

compared to the local linear case. Indeed, we found for these
cases that they follow the ωr ∼ 2n relation for the global lin-
ear analysis. The red marker ‘+’ presents the results from the
linear TERESA simulation for the temperature profile T4 with
ψ1 = 0.5. Figure 7 presents the potential solutions ϕn(ψ) of
equation (16) for n= 1, for all the five different temperature
profiles. The potential profiles are slightly different from the
previous case with J0 = 1 (figure 4), due to the gyro-bounce
average operator J0 equation (4). Figure 8 shows the ϕn(ψ)
solution profile equation (24) of mode number n= 15 for the
temperature T4 with ψ1 = 0.5, which is almost similar to the
mode number n= 1 (cyan line in figure 7). The dashed black
line presents the potential profile from the linear TERESA
simulation for the temperature profile T4 with ψ1 = 0.5 and
mode number n= 15. The potential solution is also in good
agreement with the TERESA simulation. Figure 9 presents
the decimal logarithms of the coefficients ϕ̂n,m of the func-
tion Cm in equation (24) for the mode number n= 15 for the
case with temperature profile T4(ψ1 = 0.5). The coefficients
ϕ̂n,m decrease as m increases. This confirms the spectral con-
vergence of ϕ̂n,m, which follows |ϕ̂n,m| ∼ Aexp(−βm), with
β= 0.7 for 16 m6 18 (red dashed line in figure 9). Note that
|ϕ̂n,m/ϕ̂n,1|< 10−5 for m> 18 which suggests that M= 18 is
sufficient for generating the results with good accuracy in this
case. However, in the next section the profile for ΩD is also
included, which changes the coefficients ϕ̂n,m values. There-
fore, to confirm the good accuracy for all other cases we con-
sider M= 50 throughout this manuscript. Hereafter we will
consider only the linear temperature profile T1 and vary other
important parameters for TIM instability.

4.2. Variation in precession frequency

According to equations (2) and (3), the precession frequency
ΩD depends on both ψ and κ. In the previous section, we
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Figure 7. Potential solutions |ϕn(ψ)|/ϕmax for mode n= 1 with J0
equation (4) for the five different temperature profiles: T4(ψ) with
ψ1 = 0.5 (cyan line), T4(ψ) with ψ1 = 0.2 (green line), T1(ψ) (red
line), T2(ψ) (magenta line), and T3(ψ) (blue line).

Figure 8. Potential solution for the temperature profile T4 with
ψ1 = 0.5 for the highest growing mode n= 15. Black dashed line
presents the potential solution from the TERESA linear simulation.

consider a constant value of ΩD = 1. In this section we will
first consider the effect of trapping parameter κ on the preces-
sion frequency, and second, consider the ψ dependency of ΩD

and investigate their effects on the TIM instability in the limit
of Heq ≈ E.

4.2.1. κ dependency of ΩD. In a banana orbit, the critical
poloidal angle θcrit, where v∥ = 0, is linked with the trap-
ping parameter κ as κ2 = sin2

(
θcrit
2

)
. Therefore, the accept-

able values of κ are 06 κ6 1. κ= 0 is associated with the
particles having almost zero parallel velocity and therefore
their motions are restricted close to the center of the banana
and are called deeply trapped particles. κ∼ 1 is associated
with the particles having maximum parallel velocity for the

trapped particles,
|v∥|
|v⊥| ∼

√
Bmax
Bmin

− 1, whose reflecting point is

situated near the position of the maximummagnetic field Bmax

at the inner side of the tokamak, and are called barely trapped

Figure 9. Coefficients log(|ϕ̂n,m|) of the function Cm versus m for
M= 50 points along ψ in a computation for the mode n= 15 in the
case of temperature profile T4 with ψ1 = 0.5. A function
log[A0 exp(−βm)] is plotted for β= 0.7 (red dashed line). A0 is a
constant.

Figure 10. Precession frequency ω̄d(κ) equation (3) for
magnetic-shear s0 = 0.8.

particles. Equation (3) presents the theoretical κ dependency
of the precession frequency ω̄d(κ). Figure 10 presents this vari-
ation of ω̄d with κ for a constant value of magnetic-shear s0 =
0.8. In the absence of ψ dependency of precession frequency,
we can write ΩD(κ) = ω̄d from equation (2). For a realistic
safety factor profile [37], the magnetic shear s0(ψ) decreases
almost linearly inψ, and atψ= 0.5 it has value s0 ∼ 0.8. In the
previous section 4.1, we considered deeply trapped particles
with κ= 0. Here, we consider two different cases with the
same temperature profile T1. In one case, we consider a con-
stant value of precession frequency ΩD = 0.6 associated with
barely trapped particles (κ∼ 1), and to compare the results we
reconsider the previous case with ΩD = 1 (κ= 0) and temper-
ature profile T1. In the second case, to incorporate the effect of
pitch-angle dependency in the TIM instability we consider the
entire ΩD(κ) profile for the trapped particles. In this second
case, the dispersion relation is calculated by doing the integ-
ration along κ systemically according to equation (12), which
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was neglected for constantΩD by replacing
´ 1
0 κK(κ2)dκ= 1.

One important aspect is that for both cases we assume that the
fraction of trapped particle ft ∼

√
2ε remains constant, which

is controlled by the parameter Cad in equation (12). If we
consider the radial dependency of the inverse of the aspect
ratio as ε= r

R0
, the fraction of trapped particle can be writ-

ten as ft ∼ (1−ψ)1/4. This justifies our approximation ft ∼
const. throughout the region ψ ∈ [0,1]. Therefore, in the first
case with constant ΩD = 0.6, all trapped-particles are trapped
near the separatrix (barely trapped), and for ΩD = 1, an equal
amount of particles are trapped near the center of the banana.
In contrast, in the second case with the entire ΩD(κ) pro-
file, an equal amount of trapped particles are distributed over
the entire trapped domain. The other essential parameters are
taken from table 3.

Figure 11 presents the growth rates γ for different values of
mode numbers n of TIM instability for these cases. Since the
TIM instability occurs due to the resonance of precession fre-
quencyΩD of particles with the wave frequencyω, for low pre-
cession frequency ΩD = 0.6 the wave with the smaller phase
velocity (smaller ω) resonates. In the equilibrium distribution
Feq(E) equation (A1), there are a large number of particles
near the lower velocity (E≡ 1

2mv
2
G∥ +µBG) compared to the

higher velocity; as a consequence, the charge separation due
to ∇B drift in the presence of the temperature gradient would
be higher near the lower velocity compared to the higher velo-
city (higher ΩD), and generates a stronger electric field which
helps to enhance the density perturbation of the wave. There-
fore ΩD = 0.6 has a higher growth rate compared to the case
with higher precession frequency ΩD = 1. Since the real part
of the TIM frequency ωr ∝ ΩD equation (A5), for the lower
ΩD = 0.6 valueωr is significantly smaller compared toΩD = 1
case. If we consider the entire profile of ΩD(κ) for the con-
stant magnetic-shear s0 = 0.8 (figure 10), up to κ6 0.85, the
precession frequency ΩD > 1, and within 0.856 κ6 1 it has
smaller value ΩD < 1. Since the equilibrium distribution Feq

equation (A1) is independent of κ, there are an equal num-
ber of particles at all κ values. Therefore in this case, most of
the particles (almost 80%) have precession frequencyΩD > 1;
only 20% particles have precession frequency ΩD < 1. As a
result, the contribution from the ΩD > 1 dominates, therefore
the waves with higher phase velocity (higher ω) resonate with
the particles, where less number of particles are available due
to the Maxwellian particle distribution in v∥. This decreases
the growth rate γ compared to the ΩD = 1 case. The entire κ
dependent ΩD(κ) profile decreases the growth rate by 30%–
50% compared to a constant ΩD value at a constant κ loca-
tion. The dots are the growth rates for different mode numbers
n from the linear TERESA simulation.

4.2.2. ψ dependency of ΩD. The theoretical depend-
ency of the precession frequency on the radius r is given
by equations (2) and (3) where both the safety factor
q(r), and magnetic shear s0(r) = r

q(r)
dq
dr depend on r. For

a particular q(r) profile q(r) = 1.1+ 2r2 profile [37], the
magnetic flux-function is calculated from the integration

Table 3. Main input parameters used for studies in section 4.2.

δb,i ρc,i Cad Cpol T(ψ) Teq neq M GT

0.1 0.03 0.1 0.1 T1 1 1 50 0.25

Figure 11. Growth rate γ versus mode-number n with J0 from
equation (4) and temperature T1(ψ), for constant values of
precession frequency ΩD = 1 (solid blue line) and 0.6 (solid red
line). The black solid line is for the entire profile of ΩD(κ)
equation (3). The dots are the results from the linear TERESA
simulations.

ψ(r)∼−Bmin
´ a
rin

r
q(r)dr, and normalized according to table 1,

where Lψ = |ψ(rin)−ψ(a)| is the length of the simulation box
in the ψ unit. Finally, r depends on ψ as,

r=

√
q(a)
2

(
q(rin)
q(a)

)ψ
− q(0)

2
, (31)

where q(a), q(0) and q(rin) are the values of the safety factor
at r= a, r= 0 and r= rin, where a is the minor radius of the
tokamak, and rin is the lower limit of r integration in the ψ(r)
expression, which helps to remove the singular nature of ωd in
equation (2) at r→ 0. Using this expression of r equation (31)
into q(r) and s0(r), the ψ dependent safety factor q(ψ) and
magnetic shear s0(ψ) can be obtained, and finally ΩD(ψ,κ)
can be calculated from equations (2) and (3). The theoretical
ΩD(ψ) profile for rin = 0.2 and κ= 0 is presented by the solid
cyan line in figure 12, which has an almost constant value
ΩD ∼ 1within 06 ψ 6 0.75 and after that near the core region
of the tokamak (ψ→ 1), ΩD increases abruptly with increase
in ψ. For simplicity, first we consider how ΩD varies linearly
with ψ as:

ΩD(ψ) = Ω0 +GΩψ, (32)

and study the effect of ψ dependentΩD(ψ) on TIM instability.
HereΩ0 = 1 is the value ofΩD atψ= 0, andGΩ is the gradient
in theΩD(ψ) profile. This linearly increasingΩD(ψ) profile for
different values of GΩ = 0, 0.25, 0.4 and 0.6 is presented in
figure 12. In this section, the temperature profile T1(ψ) with
GT = 0.25, and ΩD(ψ) profile with GΩ = 0.25 and GΩ = 0
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Figure 12. Precession frequency profiles ΩD(ψ) = ΩD0 +GΩψ,
with GΩ = 0 (solid red line), GΩ = 0.25 (solid blue line), GΩ = 0.4
(solid black line) and GΩ = 0.6 (solid magenta line). ΩD0 = 1 for all
the cases. The theoretical ΩD(ψ) profile (solid cyan line) is
calculated from equation (2) for κ= 0 and q(r) = 1.1+ 2r2.

Figure 13. Growth rate γ versus mode-number n with J0 from
equation (4) and temperature T1(ψ), and ψ dependent precession
frequency ΩD(ψ) = Ω0 + 0.25ψ is presented in the solid red line.
The solid blue line presents the ΩD = 1 case. The dots are the
results from the linear TERESA simulations.

equation (32) are taken into account. The other ΩD(ψ) pro-
files will be considered in the section 5. The other essential
parameters are taken from table 3.

Figure 13 presents the growth rates of TIMs n, for the
ΩD(ψ) profile equation (32) with GΩ = 0.25, and GΩ = 0. As
discussed in the previous section 4.2.1, for largerΩD, the num-
ber of resonant particles decreases compared to the case with
a smaller ΩD value, and as a consequence generates a smaller
growth rate of the TIM instability. Since in theΩD profile with
GΩ = 0.25 equation (32), for all ψ value ΩD > 1 and the tem-
perature profile T1(ψ) remains unchanged, the growth rate γ
for all n values is smaller compared to the case with ΩD = 1.
Here, the dots present the results from the linear TERESA sim-
ulation. The real part of the frequency ωr for the TIM instabil-
ity is proportional toΩD equation (A5). Therefore, in this case

Figure 14. Potential solutions |ϕn(ψ)|/ϕmax for mode n= 1 with J0
equation (4) for the precession frequency ΩD = 1 (dashed cyan),
ΩD = 0.6 (solid red), ΩD = 1+ 0.25ψ (dashed black), ΩD(κ)
(dashed blue).

ωr will be larger compared to the case with ΩD = 1. However,
we have not presented the ωr− n profile within this manu-
script. Figure 14 presents the potential ϕn(ψ) profiles for the
four different ΩD profiles with a constant temperature profile
T1, which are almost similar. Therefore, in the limit Heq ≈ E
the potential profiles are almost independent of the preces-
sion frequency profiles. One important point is that in case
of ψ dependent precession frequency ΩD(ψ), the equilibrium
HamiltonianHeq depends on ψ in a more complicated manner,
which was linear in ψ for a constant ΩD. Therefore, the limit
Heq ≈ E is no longer a good approximation; one has to con-
sider the expression of the exact Hamiltonian. We will discuss
this issue in the next section.

5. Effect of inverse gradient length of equilibrium
Hamiltonian κΛ on TIM instability

In this section, we consider the dispersion relation
(equations (13)–(15)), which is derived from the exact
Hamiltonian expression equation (7) in section 2. In this case,
according to equation (20), the threshold value of κT for TIM
instability is higher compared to the case in the limit Heq ≈ E.
Therefore, in this section we have considered the temperature
profile T1(ψ) with gradient GT = 3 and 2 in equation (30)
which was 0.25 in the previous cases section 4 in the limit
Heq ≈ E. To investigate the effect of κΛ on TIM instability,
we consider precession frequency ΩD(ψ) according to the
theoretical expression equations (2) and (3) and also the sim-
plified expression in the form of equation (32) with three
different values of gradient GΩ = 0, 0.4 and 0.6. Figure 12
presents all these ΩD(ψ) profiles. Considering the theoretical
expression of ΩD(r,κ) equations (2) and (3) and the safety
factor profile as q(r) = 1.1+ 2r2, the expression of ΛD(r,κ)
can be written as,

13
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Figure 15. Different profiles of ΛD(ψ) = 1+
´
ΩD(ψ)dψ,

associated with three different ΩD(ψ) profiles. Solid red, black and
magenta lines are associated with GΩ = 0, 0.4 and 0.6, respectively
in equation (32). The solid cyan line presents the ΛD(ψ) profile for
the theoretical expression of ΩD(ψ) equations (2) and (3).

Table 4. Main input parameters used for studies in section 5.

δb,i ρc,i Cad Cpol T(ψ) Teq neq M GT

0.1 0.03 0.1 0.1 T1 1 1 50 3, 2

ΛD(r,κ) = 1+
4

q(a) ln
(
q(a)q(rin)

)[−λ2(κ)r+ 4
√
2q(0)

×λ1(κ) tan
−1
(√

2
q(0)

r

)
+λ2(κ)

√
1
2
(q(a)− q(0))

− 4
√
2q(0)λ1(κ) tan

−1
(√

q(a)
q(0)

− 1

)]
,

(33)

where λ1(κ) =
(

E(κ2)
K(κ2) +κ2 − 1

)
, and λ2(κ) =

(
10 E(κ2)

K(κ2)+

8 κ2 − 9
)
. Substituting the value of r from equation (31), ψ

dependent ΛD(ψ,κ) can be calculated. This ΛD(ψ) profile
equation (33) with κ= 0 is presented in figure 15 with a solid
cyan line. The other profiles of ΛD(ψ) in figure 15 are, for
the simplifiedΩD(ψ) profile in equation (32) withGΩ = 0, 0.4
and 0.6. Therefore, theΛD(ψ) profile for the simplifiedΩD(ψ)
expression equation (32) with GΩ = 0, is almost similar with
the ΛD(ψ) profile for the theoretical expression of ΩD(ψ,κ)
with κ= 0. The values of κΛ = ΩD

ΛD
for all the four profiles

at ψ= 0 is κΛ = 1, and then decreases with different rates
as ψ increases. Here we first consider the temperature pro-
file T1 with gradient GT = 3 and study the TIM instability for
all the four ΛD and ΩD profiles. Then, in order to understand
the effect of temperature gradient on TIM instability in this
new modified model with an exact equilibrium Hamiltonian,
we decrease the temperature gradient GT = 2 and consider the
theoretical expression of ΩD as equations (2) and (3) and the
ΛD profile as equation (33) for κ= 0. Other essential para-
meters are taken from table 4. The potential solution ϕn(ψ)
is obtained by solving the differential equation (16) with the

Figure 16. Real part of the frequency ωr of TIM instability for T1

with GT = 3 and ΩD(ψ) profiles according to the theoretical
expression equations (2) and (3) with κ= 0 (solid cyan line), and
from the simplified expression equation (32) with GΩ = 0 (solid red
line), GΩ = 0.4 (solid blue line) and GΩ = 0.6 (solid black line).
The solid magenta line denotes GT = 2 and the theoretical
expression of ΩD(ψ).

expression for theNn equation (13), using the spectral method.
Due to the high temperature gradient GT = 3 and 2, the value
of T(ψ) is very high compared to previous cases, which makes
the particle equilibrium distribution Feq(ψ,κ,E) equation (10)
broaden to a high E value. Therefore, in this case we have to
increase the maximum limit of E as E ∈ [0,45] for the numer-
ical integration along the E direction, whereas for the previous
cases with GT = 0.25 we considered E ∈ [0,20].

Figure 16 presents the real part of the TIM instability for
different mode numbers n for all these five cases. According
to equation (18), the case with the higher κΛ value has higher
ωr, therefore the case with the larger GΩ has higher ωr. In the
theoretical expression of ΩD for κ= 0 the value of ΩD ∼ 1 for
ψ ∈ [0,0.75] and only for ψ > 0.75, it has values greater than
the unity. Therefore, the ωr profile of TIM instability, in this
case is very close to the case with the ΩD = 1 profile. Keeping
the ΩD profile fixed, if we decrease the κT value by decreas-
ing GT = 2, the ωr value decreases by a very small amount.
Figure 17 presents the growth rate γ for different mode num-
bers n of TIM instability. Since κΛ in the expression of N
equation (13) reduces the effect of κT , the growth rates in all
these cases are very small compared to the previous cases with
κΛ = 0 and Λ = 1. Moreover, the increase in κΛ decreases the
γ value. Among the three ΩD profiles, the cases with highest
GΩ = 0.6 value have a higher κΛ value, which gives the lowest
growth rate. As in the theoretical expression of ΩD for κ= 0
has value ΩD ∼ 1 within the region ψ ∈ [0,0.75] and after that
it increases, therefore the growth rate γ in this case is almost
similar to the case withΩD = 1 and has a slightly smaller value
due to ΩD > 1 within the region ψ > 0.75. Therefore, we can
conclude that the complicated theoretical expression of ΩD

for κ= 0 can be simplified as ΩD = 1 with a good accuracy
for studying the TIM instability. If we decrease the temper-
ature gradient GT = 2, for the same theoretical ΩD profile, the
growth rate γ decreases by a significant amount (∼70%) due to
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Figure 17. Growth rate γ of different modes n, T1 with GT = 3 and
different ΩD(ψ) profiles, solid red, blue and black lines are for
simplified ΩD(ψ) expression equation (32) with GΩ = 0, GΩ = 0.4
and GΩ = 0.6 respectively. Solid cyan line: ΩD(ψ) theoretical
expression equations (2) and (3) with κ= 0, GT = 3. Solid magenta
line: for GT = 2 and the theoretical expression of ΩD(ψ). The dots
are the results from linear TERESA simulations.

Figure 18. Potential solutions |ϕn(ψ)|/ϕmax for mode n= 1, T1

with GT = 3 and different ΩD(ψ) profiles. Solid red, blue and black
lines are for simplified ΩD(ψ) expression equation (32) with
GΩ = 0, GΩ = 0.4 and GΩ = 0.6 respectively. Solid cyan line:
ΩD(ψ) theoretical expression equations (2) and (3) with κ= 0. Solid
magenta line: for GT = 2 and the theoretical expression of ΩD(ψ).

the decrease in the κT value. The dots are the results from the
linear TERESA simulations for all cases. Figure 18 presents
the potential profiles ϕn(ψ) for n= 1 and for all the five differ-
ent cases with different ΩD(ψ) profiles. The ϕn(ψ) solution is
different for different ΩD(ψ) profiles, whereas the ϕn(ψ) pro-
files for different ΩD profiles are almost similar for the limit
Heq ≈ E. In this new model ϕn(ψ) profiles are varying with
both the temperature profiles and the precession frequency
profiles.

Throughout this paper, in the linear analysis, the nonlinear
term [J0,sϕ̃, f̃s]α,ψ is neglected, by considering that f̃s is very
small and the equilibrium distribution function Feq,s remains
unchanged during the time evolution. However, we have veri-
fied that these assumptions are valid only for small amplitude

potential |eϕ/T| ≪ 1, and as the amplitude of the potential
grows beyond a certain value (eϕ/T∼ 0.1), due to strong
nonlinear wave-particle and/or wave–wave interactions, the
growth rate γ(t) decreases and finally nonlinear saturation
occurs. Since the nonlinear evolution of the TIM is not the
focus of this study, we have not presented those results here.

6. Conclusions

In this work, we proposed an alternative way to solve a
reduced gyro-bounce averaged kinetic model for trapped
particle dynamics within a linear limit using a spectral method
[28, 29]. This method is computationally very fast compared
to the semi-Lagrangian method based solver TERESA [8, 25,
26]. Using this method we have investigated the TIM instabil-
ity. Unlike the local linear analysis [9] of trapped particle mode
instability, our proposed method can incorporate the entire
profiles (06 ψ 6 1) of all the essential parameters, and is not
restricted by their local values at ψ= 0. In this respect, our
method is a global-linear analysis of trapped particle modes
instability. Also the dependency of trapped particle drift velo-
city on magnetic poloidal flux function ψ, is newly incorpor-
ated in the gyro-bounce averaged trapped particle model by
considering the exact expression of equilibrium Hamiltonian
Heq(ψ,κ) = EΛD(ψ,κ) in quasi-neutrality equation and gyro-
bounce averaged equilibrium distribution function Feq, which
were previously simplified in the limit Heq ≈ E. With this new
Hamiltonian, a new quantity κΛ, that measures the inverse
gradient length of the equilibrium Hamiltonian, appears in the
dispersion relation of the TIM instability. All the previous
results in the limit Heq ≈ E can be recovered by substituting
ΛD = 1 and κΛ = 0. The quantity κΛ reduces the effect of κT
and κn, and as a consequence reduces the growth rate of TIM
instability.

In tokamak plasma, trapped particle modes (resonant-
branch) are driven by the resonant interaction with the pre-
cession motion of trapped particles, and these modes become
unstable in the presence of density inhomogeneity, a gradient
in the magnetic field, and above a critical gradient of temper-
ature. Therefore, the effect of different temperature profiles
T(ψ) and precession-frequencyΩD on the linear TIM instabil-
ity are investigated. The results for all the cases are compared
with the linear TERESA simulations. First we consider the
model in the limit Heq ≈ E and validate our spectral method
based solver with the TERESA simulation for the expression
of gyro-bounce average operator J0 = 1. The solutions from
this J0 = 1 case are used during the calculation of gyro-bounce
average of potential J0ϕ using the Padé expression, for the
mode number n= 1 at the first iteration. To study the effect
of temperature gradient on TIM instability, we vary the tem-
perature profiles which are relevant to different regions of a
tokamak plasma experiment and keep fixed the normalized
precession frequency value ΩD = 1. Depending on the inverse
temperature gradient length κT value, the growth rate of TIM
instability for different temperature profiles is different. The
profile with a higher κT value gives a higher growth rate, and
the highest growing mode also shifted toward a higher mode
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number. The real part of frequency ωr− n profile for all the
temperature profiles with a constant ΩD value, follow a rela-
tion ωr ∼ 2nΩD. We have then studied the effect of variations
in precession frequency profile ΩD on TIM instability in the
limit Heq ≈ E. For lower values of ΩD, the waves with smal-
ler velocity make resonance with the trapped ion motion. Due
to Maxwellian energy distribution of particles, a large number
of particles near the lower velocity take part in the instabil-
ity generation mechanism, and yield stronger instability for
smaller ΩD. Hence, we get larger growth rates for smaller ΩD.
The effect of pitch-angle dependency of trapped particles on
the TIM instability is investigated by considering the entire κ
dependent profile of ΩD. Since for a constant magnetic shear
s0 = 0.8, for most of the κ value ΩD(κ)> 1 except near the
separatrix 0.856 κ6 1, the growth rate of TIM instability is
smaller compared to the ΩD = 1 case. The ψ dependency of
the precession frequencyΩD(ψ) on TIM instability in the limit
Heq ≈ E, is also investigated for a simplified linearly increas-
ing ΩD profile. Since for this profile. the values of precession
frequency ΩD > 1 for all the ψ> 0 locations, the growth rate
of the TIM instability is smaller than the case with ΩD = 1. In
the limitHeq ≈ E, the potential profiles are almost independent
of different ΩD(ψ,κ) profiles.

The effect of ψ dependency ofΩD on the TIM instability in
the newly modified model with exact equilibriumHamiltonian
expression is investigated by considering a theoretical expres-
sion ofΩD and a simplified linearly increasing function ofΩD.
For κ= 0 the theoretical expression of ΩD has value ΩD ∼ 1
within the region 06 ψ 6 0.75, and after that it increases. The
growth rate γ of TIM instability for the particular theoretical
ΩD profile is almost similar to the ΩD = 1 case, and due to
ΩD > 1 with in the region 0.756 ψ 6 1, it is slightly smaller
than ΩD = 1 case. With the increase of the slope GΩ in the
simplified linearly increasing ΩD profile, which increases κΛ
value, the growth rate of different modes n for the instability
decreases. Moreover, after the new modification, the decrease
in slope GT of the temperature profile (decrease κT value) for
a fixed ΩD profile, decreases the growth rate, which is consist-
ent with the results in the limit Heq ≈ E. In this newly mod-
ified model the potential solutions are different for different
ΩD profiles.
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Appendix. Linear analysis within the limit Heq ≈ E

The global linear analysis for the case with the limit Heq ≈ E
can be derived in a similar way, as discussed in section 2.1.
Here the normalized equilibrium distribution Feq,s is inde-
pendent of (α,κ, t), and has the form of a two-dimensional
(2D) Maxwellian energy distribution function

Feq,s(ψ,E) =
ns(ψ)

T3/2s (ψ)
exp

(
− E
Ts(ψ)

)
. (A1)

After substituting Feq,s from equation (A1), f̃s =∑
n,ω fs,n,ω(ψ,E,κ)exp{i(nα−ωt)} and ϕ̃=∑
n,ω ϕn,ω(ψ)exp{i(nα−ωt)}, in equation (9), the solution

of the Vlasov equation in Fourier space becomes,

fs,n,ω(ψ,E,κ) =
n
[
κn(ψ)+κT(ψ)

(
E

Ts(ψ)
− 3

2

)]
Z−1
s nΩD(κ)E−ω

×{J0,n,sϕn,ω(ψ)}Feq,s(ψ,E).

(A2)

In this case the elementary volume in phase-space can be writ-
ten as d3v= 4π

√
2m−3/2

√
EdE dλ

4ΩD
. Using this volume ele-

ment d3v and fn,ω from equation (A2) the expression of Ns in
equation (12) can be written (in the limit of a constant pitch-
angle) as,

Nn,s(ψ) =
1
neq

ˆ ∞

0
J0,n,s

[
κn(ψ)+κT(ψ)

(
E

Ts(ψ)
− 3

2

)
Z−1
s ΩD(E−χs)

×{J0,n,sϕn,ω(ψ)}
ns(ψ)

T3/2s (ψ)
exp

(
− E
Ts(ψ)

)]√
EdE,

(A3)

where χs =
ω

nZ−1
s ΩD

. The expression of Cn equation (14)
remains unaltered. Therefore the dispersion relation becomes,

Cnϕn,ω =N ∗
n,iϕn,ω −N ∗

n,eϕn,ω (A4)

where N ∗
n,s =

Nn,s

ϕn,ω
. The final form of the second-order differ-

ential equation for ϕn(ψ) equation (16) remains unchanged,
except N ∗

n inside Qn(ψ) equation (17), where N is given
by equation (A3). Comparing the expressions of N from
equations (13) and (A3), the main difference in the disper-
sion relation arises due to the absence of the term −EΛD

T κΛ
in N in the limit Heq ≈ E, which reduces the effective contri-
bution from κn and κT in the case of an exact Hamiltonian.
Therefore the growth rate of the TIM instability in the limit
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Heq ≈ E, is significantly higher compared to the case with the
exact Hamiltonian.

As discussed in section 2.2 the local linear stability analysis
of this reduced gyro-bounce averagedmodel in the limitHeq ≈
E can be performed and the threshold frequency value of TIM
instability can be derived as [9]:

ωr =

(
3
2κT−κn

)
κT

nΩDT0, (A5)

where T0 is the temperature at ψ= 0. The threshold value of
κT for the TIM instability can be written as

κT,th =
CnΩD0´∞

0 J20,n exp(−ξ)
√
ξdξ

(A6)

where ξ = E
T .

ORCID iDs

D Mandal https://orcid.org/0000-0001-8871-4785
M Lesur https://orcid.org/0000-0001-9747-5616
E Gravier https://orcid.org/0000-0002-8911-5546
J N Sama https://orcid.org/0000-0002-0832-4312
A Guillevic https://orcid.org/0000-0003-0182-3677
Y Sarazin https://orcid.org/0000-0003-2479-563X
X Garbet https://orcid.org/0000-0001-5730-1259

References

[1] Dimits A M, Cohen B I, Nevins W M and Shumaker D E 2001
Nucl. Fusion 41 1725

[2] Guzdar P N, Chen L, Tang W M and Rutherford P H 1983
Phys. Fluids 26 673

[3] Ottaviani M, Horton W and Erba M 1997 Plasma Phys.
Control. Fusion 39 1461

[4] Stallard B W et al 1999 Phys. Plasmas 6 1978
[5] Dannert T and Jenko F 2005 Phys. Plasmas 12 072309
[6] Brower D L, Peebles W A, Kim S K, Luhmann N C,

Tang W M and Phillips P E 1987 Phys. Rev. Lett. 59 48
[7] Eubank H et al 1979 Phys. Rev. Lett. 43 270

[8] Depret G, Garbet X, Bertrand P and Ghizzo A 2000 Plasma
Phys. Control. Fusion 42 949

[9] Drouot T, Gravier E, Reveille T, Ghizzo A, Bertrand P,
Garbet X, Sarazin Y and Cartier-Michaud T 2014 Eur.
Phys. J. D 68 280

[10] Garbet X 2001 Plasma Phys. Control. Fusion 43 A251
[11] Ghizzo A and Palermo F 2015 Phys. Plasmas 22 082304
[12] Chen H and Chen L 2022 Phys. Rev. Lett. 128 025003
[13] Drouot T et al 2015 Phys. Plasmas 22 082302
[14] Waltz R E, Kerbel G D and Milovich J 1994 Phys. Plasmas 1 7
[15] Ottaviani M, Romanelli F, Benzi R, Briscolini M,

Santangelo P and Succi S 1990 Phys. Fluids B 2 1
[16] Dorland W and Hammett G W 1993 Phys. Fluids 5 812
[17] Lin Z and Chen L 2001 Phys. Plasmas 8 1447
[18] Sydora R D, Decyk V K and Dawson J M 1996 Plasma Phys.

Control. Fusion 38 A281
[19] Lee W W 1987 J. Comput. Phys. 72 243
[20] Idomura Y, Tokuda S and Kishimoto Y 2003 Nucl. Fusion

43 234
[21] Manfredi G, Shoucri M, Dendy R O, Ghizzo A and Bertrand P

1996 Phys. Plasmas 3 202
[22] Kwon J-M, Qi L, Yi S and Hahmba T S 2017 Comput. Phys.

Commun. 215 81
[23] Fong B H and Hahm T S 1999 Phys. Plasmas 6 188
[24] Ghizzo A, Mouden M E, Sarto D D, Garbet X and Sarazin Y

2011 Transp. Theory Stat. Phys. 40 382
[25] Sarazin Y, Grandgirard V, Fleurence E, Garbet X, Ghendrih P,

Bertrand P and Depret G 2005 Plasma Phys. Control.
Fusion 47 1817

[26] Darmet G, Ghendrih P, Sarazin Y, Garbet X and Grandgirard V
2008 Commun. Nonlinear Sci. Numer. Simul. 13 53

[27] Lesur M et al 2020 Nucl. Fusion 60 036016
[28] Gravier E, Plaut E, Caron X and Jenny M 2013 Eur. Phys. J. D

67 7
[29] Gravier E and Plaut E 2013 Phys. Plasmas 20 042105
[30] Drouot T 2015 PhD Thesis Université de Lorraine
[31] Plemelj J 1908 Mon.hefte Math. Phys. 19 205
[32] Priymak V G and Miyazaki T 1998 J. Comput. Phys. 142 370
[33] Lagarias J C, Reeds J A, Wright M H and Wright P E 1998

SIAM J. Opt. 9 112
[34] Lesur M, Cartier-Michaud T, Drouot T, Diamond P H,

Kosuga Y, Réveillé T, Gravier E, Garbet X, Itoh S-I and
Itoh K 2017 Phys. Plasmas 24 012511

[35] Jacquinot J and (the JET Team) 1999 Plasma Phys. Control.
Fusion 41 A13

[36] Pánek R, Adámek J, Aftanas M, Bilková P and et al 2015
Plasma Phys. Control. Fusion 58 014015

[37] Gobbin M et al 2011 Phys. Plasmas 18 062505

17

https://orcid.org/0000-0001-8871-4785
https://orcid.org/0000-0001-8871-4785
https://orcid.org/0000-0001-9747-5616
https://orcid.org/0000-0001-9747-5616
https://orcid.org/0000-0002-8911-5546
https://orcid.org/0000-0002-8911-5546
https://orcid.org/0000-0002-0832-4312
https://orcid.org/0000-0002-0832-4312
https://orcid.org/0000-0003-0182-3677
https://orcid.org/0000-0003-0182-3677
https://orcid.org/0000-0003-2479-563X
https://orcid.org/0000-0003-2479-563X
https://orcid.org/0000-0001-5730-1259
https://orcid.org/0000-0001-5730-1259
https://doi.org/10.1088/0029-5515/41/11/322
https://doi.org/10.1088/0029-5515/41/11/322
https://doi.org/10.1063/1.864182
https://doi.org/10.1063/1.864182
https://doi.org/10.1088/0741-3335/39/9/012
https://doi.org/10.1088/0741-3335/39/9/012
https://doi.org/10.1063/1.873494
https://doi.org/10.1063/1.873494
https://doi.org/10.1063/1.1947447
https://doi.org/10.1063/1.1947447
https://doi.org/10.1103/PhysRevLett.59.48
https://doi.org/10.1103/PhysRevLett.59.48
https://doi.org/10.1103/PhysRevLett.43.270
https://doi.org/10.1103/PhysRevLett.43.270
https://doi.org/10.1088/0741-3335/42/9/302
https://doi.org/10.1088/0741-3335/42/9/302
https://doi.org/10.1140/epjd/e2014-50151-2
https://doi.org/10.1140/epjd/e2014-50151-2
https://doi.org/10.1088/0741-3335/43/12A/319
https://doi.org/10.1088/0741-3335/43/12A/319
https://doi.org/10.1063/1.4928103
https://doi.org/10.1063/1.4928103
https://doi.org/10.1103/PhysRevLett.128.025003
https://doi.org/10.1103/PhysRevLett.128.025003
https://doi.org/10.1063/1.4927920
https://doi.org/10.1063/1.4927920
https://doi.org/10.1063/1.870934
https://doi.org/10.1063/1.870934
https://doi.org/10.1063/1.859540
https://doi.org/10.1063/1.859540
https://doi.org/10.1063/1.860934
https://doi.org/10.1063/1.860934
https://doi.org/10.1063/1.1356438
https://doi.org/10.1063/1.1356438
https://doi.org/10.1088/0741-3335/38/12A/021
https://doi.org/10.1088/0741-3335/38/12A/021
https://doi.org/10.1016/0021-9991(87)90080-5
https://doi.org/10.1016/0021-9991(87)90080-5
https://doi.org/10.1088/0029-5515/43/4/303
https://doi.org/10.1088/0029-5515/43/4/303
https://doi.org/10.1063/1.871846
https://doi.org/10.1063/1.871846
https://doi.org/10.1016/j.cpc.2017.02.009
https://doi.org/10.1016/j.cpc.2017.02.009
https://doi.org/10.1063/1.873272
https://doi.org/10.1063/1.873272
https://doi.org/10.1080/00411450.2011.651043
https://doi.org/10.1080/00411450.2011.651043
https://doi.org/10.1088/0741-3335/47/10/013
https://doi.org/10.1088/0741-3335/47/10/013
https://doi.org/10.1016/j.cnsns.2007.05.024
https://doi.org/10.1016/j.cnsns.2007.05.024
https://doi.org/10.1088/1741-4326/ab6e48
https://doi.org/10.1088/1741-4326/ab6e48
https://doi.org/10.1140/epjd/e2012-30637-7
https://doi.org/10.1140/epjd/e2012-30637-7
https://doi.org/10.1063/1.4799814
https://doi.org/10.1063/1.4799814
https://doi.org/10.1007/BF01736696
https://doi.org/10.1007/BF01736696
https://doi.org/10.1006/jcph.1998.5931
https://doi.org/10.1006/jcph.1998.5931
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1063/1.4974269
https://doi.org/10.1063/1.4974269
https://doi.org/10.1088/0741-3335/41/3A/002
https://doi.org/10.1088/0741-3335/41/3A/002
https://doi.org/10.1088/0741-3335/58/1/014015
https://doi.org/10.1088/0741-3335/58/1/014015
https://doi.org/10.1063/1.3602083
https://doi.org/10.1063/1.3602083

	Global linear stability analysis of kinetic trapped ion mode (TIM) in tokamak plasma using the spectral method
	1. Introduction
	2. The bounce-averaged gyrokinetic model and its modifications due to exact Hamiltonian (H(ψ,κ))
	2.1. Global linearized model
	2.2. Local linearized analysis

	3. Global linear analysis: spectral method
	4. Effect of temperature and precession frequency on TIM instability in the limit HeqE
	4.1. Different temperature profiles
	4.1.1. J0 = 1 case.
	4.1.2. J0 according to the Padé expression.

	4.2. Variation in precession frequency
	4.2.1. κ dependency of ΩD.
	4.2.2. ψ dependency of ΩD.


	5. Effect of inverse gradient length of equilibrium Hamiltonian κΛ on TIM instability
	6. Conclusions
	Appendix. Linear analysis within the limit HeqE
	References


