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To study the nonlinear saturation mechanism in turbulent plasmas, we plan to obseve ion temperature gra-
dient (ITG) modes in the Plasma Assembly for Nonlinear Turbulence Analysis (PANTA). Linear growth rates
of ITG modes in the linear device are analyzed to determine their excitation conditions using a three-field fluid
model to describe the ion motion. Parameter scans of the linear growth rate show the threshold for ITG mode
excitation, and the typical plasma parameters of the PANTA are found in the unstable domain.

c© 2013 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: ion temperature gradient mode, linear growth rate, linear device, threshold value, collision, local
approximation, dispersion relation

DOI: 10.1585/pfr.8.2403133

1. Introduction
Understanding ion temperature gradient (ITG) modes

(ηi modes) is important because they represent a possible
cause of anomalous ion energy transport in fusion plas-
mas [1–3]. To determine the fundamental properties of
ITG modes, experiments and simulations have been carried
out using the Columbia Linear Machine (CLM), which is a
linear device. These experiments have shown an excitation
of ITG instability, with a high parallel ITG ∇Ti‖ and a low
density gradient ∇N, that is the high ηi (= ∇ lnTi‖/∇ lnN)
[4]. The results have also been supported by numerical
simulations [5]. For the Plasma Assembly for Nonlinear
Turbulence Analysis (PANTA), detailed measurements by
using multiple probe arrays have revealed structural for-
mations with nonlinear mode coupling of unstable modes
in resistive drift wave turbulence [6]. To study ITG tur-
bulence, we plan to observe ITG modes and perform ion
temperature measurements using ion-sensitive probes [7].
Predicting the excitation conditions of ITG modes is an ur-
gent task for performing these observation.

As a first step, numerical analyses of linear growth
rates are carried out using a fluid model. The set of model
equations given in this study describes the ion motion with
the effects of collisions. These equations are an extension
of the Hamaguchi–Horton equation [8]. Parameter scans
of the linear growth rate show the threshold for ITG mode
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excitation, and the dependences can be compared with our
analytical solutions. Because the target plasma is colli-
sional, the resistive drift wave instability is also impor-
tant, whose numerical analyses have already been carried
out [9]. In addition to that, the ITG instability that comes
from ion motion may be one of the key players in plasma
turbulence in the PANTA, which is studied in this paper.

This paper is organized as follows: In §2, the fluid
model equations and plasma configuration are described.
In §3, the analytical solutions are explained, which show
the tendency of ITG mode excitation. In §4, the linear
eigenmode analysis is performed to estimate excitation
conditions of ITG modes in the PANTA. Finally, we sum-
marize our results in §5.

2. Model of ITG Modes
The ion time scale in the PANTA is in the range of

νin � Ωi � νii, where νin is the ion–neutral collision fre-
quency, νii is the ion–ion collision frequency, and Ωi is the
ion cyclotron frequency. The plasma in the PANTA is col-
lisional and has a much smaller mean free path than the
ion Larmor radius; thus, a fluid model was adopted for the
analyses.

2.1 Fluid equations
The model used for the analysis of ITG modes is de-

scribed in this section. The set of model equations consists
of the ion continuity equation, ion momentum conserva-
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tion equation, and ion energy conservation equation:

∂ni

∂t
+ ∇ · (nivi) = 0, (1)

nimi
dvi

dt
= −∇pi + nie(E + vi × B) + Ri, (2)

dpi

dt
= −γpi∇ · vi − (γ − 1)∇ · qi, (3)

where pi is the ion pressure, ni is the ion density, mi is
the ion mass, vi is the ion velocity, γ is the heat capacity
ratio, E is the electric field, Ri is the friction force, and qi

is the heat flux. For simplicity, the Boltzmann relation and
quasi-neutral conditions were assumed:

ne = ni, (4)

ne = n0 exp(eφ/Te). (5)

Note that the collision effect on an electron is not negligible
in the PANTA; thus, excitation of the resistive drift wave is
possible, which is not considered in this paper.

For simplicity, the following assumptions were intro-
duced;

• Negligible heat flux : ∇ · qi = 0:
• Parallel friction force only:

Ri = Ri‖ = −nimiνinvi‖,

• Constant electron temperature : Te = Te0:
• Perpendicular ion velocity given by the E × B drift:

vi⊥ = (B × ∇φ̃)/B2.

Because the target plasma has a rather low temperature,
an effect of neutrals was included, which can weaken in-
stability [9]. The finite Larmor radius effect and other ki-
netic effects were not included because the plasma is colli-
sional. Each variable was rewritten into the following form
for cylindrical coordinate:

f = feq(r) + f̃ (r, θ, z, t), (6)

where the first and second terms represent the equilibrium
and fluctuation parts, respectively. In addition, φ = φ̃, vi‖ =
ṽi‖ and the Boltzmann relation ñ = eφ̃/Te were assumed.
The linearized set of Eqs. (1–3) was then rewritten:

∂

∂t
(1 − ∇2

⊥)Φ̃ = −∇‖ · Ṽ +
∂Neq

∂r
1
r
∂Φ̃

∂θ

+
∂Peq

∂r
1
r

∂∇2⊥Φ̃
∂θ

− μW∇4
⊥Φ̃, (7)

∂Ṽ
∂t
= −∇‖(P̃ + Φ̃) − νinṼ + μV∇2

⊥Ṽ , (8)

∂P̃
∂t
= −γθi∇‖ · Ṽ +

∂Peq

∂r
1
r
∂Φ̃

∂θ
+ μP∇2

⊥P̃. (9)

Equation (7) is a combination of Eq. (1) and the rotation of
the perpendicular part of Eq. (2). The following normal-
izations were introduced here;

r =
r
ρs
, t = Ωcit, vi =

vi

cs
, θi =

Ti0

Te
,

N = ln(ni), Φ =
eφ
Te
, V =

vi‖
cs
, P =

pi

pe0
, (10)

Fig. 1 Cylindrical plasma configuration.

where Ωci = eB/mi is the ion cyclotron frequency, cs =√
Te/mi is the ion sound velocity, and ρs = cs/Ωci is the

effective Larmor radius (at the electron temperature). Vis-
cosities μW , μV , and μP were added in to Eqs. (7–9) to ac-
count for dissipation effects. Furthermore, in Eq. (2), per-
pendicular to the magnetic field, an unperturbed part of a
diamagnetic drift was accounted for;

vi⊥ = (B × ∇φ̃)/B2 + (B × ∇ p̃i,eq)/eniB
2. (11)

This term is substantial to excite ITG instability [10]. This
model consists of evolution equations for three fields Φ,
V and P, which is an extension of the Hamaguchi–Horton
equations [8].

2.2 Plasma configuration
The plasma configuration is shown in Fig. 1. The

plasma has a simple cylindrical shape with device length
λ, whose boundary is given at r = a. For simplicity, the
vacuum region was not treated, and the magnetic field was
only allowed to have an axial component, B = B z = con-
stant. The high-density, low-temperature plasma produced
by helicon waves in a discharge of argon was simulated.
Cylindrical coordinates (r, θ, z) were used for the model
geometry, and the periodic boundary condition in the az-
imuthal (θ) and axial (z) directions was considered to adopt
the spectral expansion by Fourier transform;

f̃ = f̃mn(r) × exp

[
i

(
−ωmnt + mθ +

2πn
λ

)]
. (12)

The radial boundary condition was set to

f̃mn(r) = 0 (at r = 0, a). (13)

3. Analytical Solutions
Analytical solutions with a local approximation help

us understand the excitation conditions of ITG modes [10].
The following Fourier representation was used:

f̃ = f̃k,ω × exp{i[−ωt + krr + kθ(aθ) + kzz]}, (14)

where

kr =
πl
a
, kθ =

m
a
, kz =

2πn
λ
,
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ω is a frequency, and l, m, and n are the radial, azimuthal,
and axial mode numbers, respectively. The set of Eqs. (7–
9) gives the following dispersion relation in a dimensional
form:

(1 + ρ2
s k2
⊥)ω2 − (1 − κiρ2

s k2
⊥)ω∗eω

− c2
s k2

z

[
1 + κiω∗e/ω

1 − γθic2
s k2

z /ω
2

]
= 0, (15)

where ω∗e = (ρs/LN)cskθ, κi = θi(1+ηi), and ηi = LN/LT i =

∇r lnTi/∇r lnN. Here μ = νin = 0 was assumed for sim-
plicity. In limited cases, analytical solutions can be found:
(i) when |ω| � |ω∗e|,

ω = ±cskz

√
γθi − κi

1 − κiρ2
s k2⊥
, (16)

except when ρsk⊥ ∼ κ−1/2
i ,

ω =
−1 ± i

√
3

2
ω+ +

−1 ∓ i
√

3
2

ω−, (17)

where

ω± = (−q ± (q2 + p3)1/2)1/3,

q = − κ2i
2(1 + κi)

ω∗ek2
z c2

s ,

p = −γθik
2
z c2

s

3
.

(ii) when |ω| � |ω∗e|, it becomes

ω = ±cskz

√
γθi +

1

1 + ρ2
s k2⊥
. (18)

Solution (16) becomes unstable when

κi >
γθi

1 + γθiρ2
s k2⊥
. (19)

Fig. 2 Growth rate as a function of (a) ηi and (b) ρskθ

This condition gives ηi > 2/3, when ρsk⊥ → 0 and
γ = 5/3. The ITG modes become unstable when κi is
larger than the threshold value. As κi increases, |ω| in-
creases accordingly, and the ∇‖Φ̃ term in Eq. (8) becomes
effective, which stabilizes the mode. Therefore, there are
upper limits in κi and ηi. Then the modes are stable in the
limit of a large frequency in Eq. (18). Figure 2 (a) shows
the growth rate as a function of ηi with (l,m, n) = (1,1,1),
γ = 5/3, θi = 0.1, ρsk⊥ = 1.84, cskz = 4.1 × 103 s−1, and
ω∗e = 28×103 s−1, which was obtained by solving Eq. (15).

The magnitude of k⊥ also affects instability. Solu-
tion (16) becomes stable when ρsk⊥ becomes large. Even
if γθi > κi, which is the case when the ITG modes are
stable with ρsk⊥ = 0, the modes become unstable with
ρsk⊥ ∼ κ−1/2

i , as is in Eq. (15). Therefore, there are up-
per and lower limits for the instability in ρsk⊥. Figure 2 (b)
shows the growth rate as a function of ρskθ with (l, n) =
(1,1), γ = 5/3, θi = 0.1, ηi = 0.2, cs = 2.6 × 103 m/s,
kz = 1.58 m−1, and LN = 50 mm.

In a drift wave mechanism, parallel motion connects
the density and the potential, and therefore, it needs the
finite kz. Modes with a larger kz become stable because a
charge separation is canceled more easily by a larger Ez.

4. Excitation Condition
4.1 Plasma parameters

The eigenvalue problem was solved using the set of
differential equations shown in Eqs. (7–9). The parame-
ters were selected to simulate the PANTA: argon plasma,
B = 0.04 T, Te = 3.0 eV, Ti0 = 0.3 eV, a = 5.0 cm, and λ
= 4.0 m. Using these parameters, the ion cyclotron fre-
quency is Ωci/2π = 15 kHz, the ion acoustic velocity is cs

= 2.6×103 m/s, the effective Larmor radius is ρs = 28 mm
and the mass ratio mi/me = 7.3 ×104. The mean free pass
is λmfp = ρiΩci/νii = 0.2 mm, which was given by the ion–
ion collision frequency νii ∼ 40Ωci, and is smaller than the
ion Larmor radius. The profile of equilibrium density, ion
temperature, and ion pressure profiles were assumed to be

Neq(r) = N0exp[−(r/LN)2],

Ti,eq(r) = Ti0exp[−(r/LTi)
2],

Peq(r) = P0exp[−(r/LP)2], (20)

respectively, where

LP = LN(1 + ηi) =
LN LT i

LN + LT i
.

Each parameter was chosen so that LN = 50 mm, LT i =

250 mm, ηi = 0.2, N0 = 1.0, and P0 = Ti0/Te = 0.1.
The ion–ion collision frequency There is no precise

measurement of the neutral density in the PANTA. A rough
estimation of the ion–neutral collision was used:

νin =
1 − α
α

ni0σin|vi| ∼ 0.05Ωci, (21)

where an average density ni0 = 1019 m−3, an ionization rate
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α = 0.5, and a cross section for ion–neutral collision σin =

10−18 m2 were used [11].
In this study, μ = μW = μV = μP was assumed and was

set to μ = 10−3ρ2
sΩci. This is a rough estimation of the

viscosity, and the dependence of instability on viscosity is
discussed in §4-4.

4.2 Unstable mode
Figure 3 (a) shows the growth rate as a function of

the azimuthal and axial mode numbers m and n, respec-
tively, using the parameters given in the previous subsec-
tion. There are some unstable modes, and the most unsta-
ble mode was found to be (m, n) = (2,2). The growth rate
and eigen frequency for (m, n) = (2,2) were found to be
5×102 s−1 and 12 kHz, respectively. However, modes with
larger m and n values were found to be stable, and mode
(m, n) = (1,1) was also stable in this case. Figure 3 (b)
shows the mode structure of the ion pressure for (m, n) =
(2,2). Modes excited in this simulation had a maximum at
the r = 25 ∼ 30 mm and no node in the plasma.

4.3 Parameter dependence
The dependence of the growth rate on the plasma

parameters was investigated. The parameters we studied
were the magnetic field B, the device length λ, the gradi-
ent lengths LN and LT i, and temperatures Te and Ti0, which

Fig. 3 (a): Growth rate as a function of the azimuthal and axial
mode numbers. Solid and dotted lines represent unstable
and stable contours, respectively. (b): Mode structure of
the ion pressure with (m, n) = (2,2), which is the most
unstable.

excite ITG modes in the PANTA. These dependencies can
be compared with the analytical solutions found in §3.

Figure 4 (a) shows the growth rate for the (m, n) =
(2,2) as a function of different gradient lengths. The un-
stable region for different gradient lengths was limited, and
the dependence on that of density LN is strong. Figure 4 (b)
shows the growth rate for the (m, n) = (2,2) as a function
of different temperatures, indicating that lower tempera-
tures are preferable for excitation. The effect of dissipa-
tions, which make modes stable at higher temperatures,
was found to be strong, and therefore, provides the upper
temperature limits.

Figure 5 (a) shows the unstable region in the B–a
space. There was no unstable mode found for B ∼ 0.1 T,
which is the maximum magnetic field in the PANTA ex-
periments. Figure 5 (b) shows the unstable region in the
λ–a space. There is no unstable mode for shorter device
lengths (λ). The dependence of the growth rate on λ was
weaker than for other plasma parameters. The parameter
ρsk⊥ is inversely proportional to a and B: thus, the unsta-
ble region is limited in the B–a space. The parameter kz is
inversely proportional to λ, and the unstable region is also
limited in the λ–a space.

Summarizing the results of the parameter scans, we
found that excitation conditions are strongly limited by the
ion temperature Ti0 and the density gradient length LN .

Fig. 4 Growth rate as a function of (a) gradient lengths LN and
LT i and (b) temperatures Te and Ti0. The cross mark
shows a typical parameter of the PANTA experiments.
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Fig. 5 Unstable regions in the (a) B–a space and (b) λ–a space.
A total of 5 unstable modes are plotted.

Fig. 6 Growth rate as a function of the ion–neutral collision fre-
quency and viscosity.

4.4 Effect of collisions
The effects of collisions and dissipations on stability

are described here. Figure 6 shows the growth rate for
(m, n) = (2,2) as a function of an ion–neutral collision fre-
quency and viscosity. We found that modes were stabilized
with larger ion–neutral collision frequencies and viscosi-

ties, and the dependence of the growth rate on viscosity
was strong. Overall, the excitation of ITG modes in the
PANTA depends on the actual viscosity.

5. Summary
To investigate turbulent plasmas by identifying the ex-

citation conditions of ITG modes in the PANTA, linear
growth rates of ITG modes were analyzed to determine its
excitation conditions. A three-field model, including po-
tential, parallel flow of ions, and ion pressure which also
account for the effect of neutrals, was used for the analy-
sis. Parameter scans showed the thresholds for ITG mode
excitation, which were found to strongly depend on the ion
temperature Ti0 and the density gradient length LN . We
also estimated the effects of collisions and dissipations on
the growth rate in this study. Futermore, the dependences
for instability can be compared with the analytical solu-
tions. Our analyses show that it is possible to excite ITG
modes in the PANTA.

The dependence of the growth rate on density and
temperature profiles was not considered in this paper,
though they do affect the instability [12]. Future studies
will involve analyses of these profiles and the nonlinear
saturation of ITG modes.
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