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1. Introduction

Toroidal rotation plays important roles in suppressing of 
turbulent transport [1] as well as stabilizing magneto hydro
dynamic instability such as resistive wall modes [2]. The 
generation mechanisms of the toroidal rotation have been 
subjects to intensive research, and the concept of the non
diffusive momentum transport is now well established. The 
offdiagonal momentum flux [3, 4] and the origins of spon
taneous rotation have been investigated. The residual stress 
due to drift wave and ITG turbulence has been reported as the 
origin of the intrinsic rotation [5–9].

In this paper, we show that energetic particle (EP)drive 
modes can play a role in the nondiffusive momentum trans
port. In the literature, energy channeling from EP to bulk 
plasma has been studied, and processes such as αchanneling 
and GAM channeling have been proposed [10, 11]. Whether 
the EP driven modes can contribute to the momentum trans
port or not is crucial. If it is possible, they may be promising 

control knobs for the toroidal rotation, because the EPdriven 
modes are controllable externally [21]. Energetic particle
driven geodesic acoustic modes (EGAMs) are one of the EP 
driven modes. EGAMs are excited by waveparticle reso
nances with EPs [12–15]. Nonlinear processes such as fre
quency chirping, saturation, mode coupling, and subcritical 
instabilities have been reported [16–20]. Recently, large 
amplitude of EGAM was observed in experiments, where 
the amplitude of the potential perturbation normalized by the 
electron temperature was observed to be order of unity [21]. 
Impacts of the EGAM on the background plasma are expected 
to be significant.

In this study, we investigate the toroidal momentum 
transport due to EGAMs, based on a quasilinear analysis. 
The EGAMs have several branches; the eigenfrequency of 
each branch is close to either the standard GAM frequency 

/ω ∼ c RG s  (cs is the sound speed, R is the major radius of the 
plasma), the transit frequency of EP, or the magnetic drift fre
quency of EP. We focus on the third branch, which is due to 
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the magnetic drift of EP [15]. The parallel momentum flux is 
calculated based on the poloidal eigenfunction of the EGAM, 
and its magnitude is shown to be significant in the total 
momentum balance of bulk plasmas. The paper is organized 
as follows. In the next section, the poloidal eigenmodes of the 
EGAM is described. In section 3, the spatial structures of the 
velocity field of the EGAM is derived, and the quasilinear 
parallel momentum flux is evaluated. The summary is given 
in section 4.

2. Poloidal eigenmode of EGAM

In this section, the poloidal eigenmode analysis of EGAM is 
briefly described, and the poloidal structure of the eigenfunc
tion is explained. In this paper, time and space are normalized 
by /RvT  and the ion gyroradius, respectively, where vT is the 
ion thermal velocity, and R is the major radius. The velocity 
is normalized by vT, the electrostatic potential is normalized 
by e/Ti, and the density of the fast ions are normalized by that 
of the electrons.

We consider a simple tokamak equilibrium with circular 
magnetic surfaces. We neglect effects of trapped particles due 
to magnetic inhomogeneity, which is justified when the mode 
frequency is much larger than the bounce frequency of trapped 
particles. The velocity distribution function of the bulk ions is 
assumed to be Maxwellian. For transparency of the analysis, 
the fast ions’ distribution is taken as a beam type distribution 
[15], where the speed of the fast ions is given by u0, and the 
pitch angle defined as the parallel velocity normalized by the 
total velocity is Λ0, and the density of the fast ions is nh. Here 
we use the following ordering; � �u n1, 1h0 . Based on the 
assumptions above, the electrostatic EGAM is considered.

The gyrokinetic equation  for the fast ions has two kinds 
of resonances in accordance with the transit frequency and 
the magnetic drift frequency of the fast ions. The transit fre
quency and the magnetic drift frequency are introduced as 

/ω = Λu qh 0 0  and ( )/ω = + Λk u 1 2D r 0
2

0
2 , respectively. Here, q 

is the safety factor, and kr is the radial wavenumber of the 
GAM, which is treated as the smallness parameter, �k 1r . 
Thus, the dominant resonance depends on the velocity and the 
pitch angle of the fast ions. (i): in the limit where the transit 
frequency of the fast ions is much larger than the drift fre
quency, ω ω�h D, the resonance due to the transit frequency 
becomes important, and the solution with ω ω∼ h appears [12, 
14, 22–24]. (ii): in the limit where the resonance due to the 
drift frequency becomes dominant, ω ω�h D, a solution with a 
frequency close to the drift frequency of the fast ions appears, 
ω ω∼ D [15]. This limit is valid when /{ ( )}Λ + Λ�u k q2 10 0 r 0

2 . 
In this limit, the eigenmode equation is given as

∑ φ =
ν

µ ν ν
=−∞

∞

D 0,, (1a)

{ ( ) } ( )δ τ δ= − + − +µ ν µ ν µ µ ν ν µ ν− −D H I1 1 ,, , ,0 , (1b)

where μ is an integer (µ = −∞ ∞�, , ), and δµ ν,  is the 
Kronecker delta. The detailed derivation of this dispersion 

relation is written in [15]. The first term in equation (1b) stems 
from adiabatic response of the electron and the bulk ions, 
ν µ ν−I ,  is the contribution from the nonadiabatic response of 

the bulk ions, which includes the Landau damping. The non
adiabatic responses of fast ions is denoted by µ ν−H , which 
includes the effect of resonance due to the magnetic drift as

ω ω θ− =sin 0.D (2)

The expressions of Im,l and Hl are given in appendix A. The 
dispersion relation equation  (1a) has solutions such as the 
ion sound waves, and the standard GAM, whose frequency 
is given as

( )
⎜ ⎟
⎛
⎝

⎞
⎠
⎡
⎣⎢

⎤
⎦⎥

ω
τ

τ τ
τ

= + +
+ +
+ q

7

4

1
1

46 32 8

7 4
,G

2

2 2 (3)

in the large safety factor limit [25]. In addition to these, a 
branch whose frequency corresponds to ωD is obtained. When 
ω ω>G D, the solution with ω ω≈ D is unstable. The solution 
with ω ω≈ G becomes unstable when ω ω<G D. The growth 
rate of the unstable branch becomes maximum when ω ω=G D. 
A detailed description of the eigenfrequency is given in [15].

We focus on the branch with ω ω≈ D in this paper. The 
poloidal harmonics of the electrostatic potential, φm, can 
be obtained from the eigenequation equation  (1a), and the 
poloidal structure of the potential can be calculated from 
φ φ= ∑ω

θem m
mi , which is shown in figure 1. Since we con

sider the poloidally inhomogeneous resonance, equation (2), 
there are special values of the poloidal angle (resonance loca
tions), ( / )θ ω ω=∗ arcsin D , where the resonance condition 
is satisfied. The potential eigenfunction has bumps and the 
imaginary part appears (which corresponds to the phase shift) 
at the resonance locations θ θ≈ ∗. In the limit where we neglect 
the magnetic drift resonance and the poloidal modes are trun
cated at =±m 1, the potential eigenfunction can be written as

Figure 1. Poloidal eigenfunction of the electrostatic potential 
perturbation in the case of τ= = = =q k n3, 0.5, 0.12, 0.015,hr  
Λ = =u0.1, 50 0 . The eigenfunction in the limit without the 
magnetic drift resonance, equation (4), is also shown as a dashed 
curve. The eigenfunction has bumps and the imaginary part appears 
near the resonance locations.

Nucl. Fusion 57 (2017) 036025



M. Sasaki et al

3

⎡
⎣⎢

⎤
⎦⎥φ

ωτ
θ φ= +ω

k
1 sin ,r

0 (4)

which agrees with the previous studies [26]. Here, φ0 is the 
poloidal averaged potential amplitude. In this limit, this eigen
function has no bumps and no phase shift, and satisfies the 
up–down antisymmetry in the poloidal cross section. The up–
down antisymmetry is broken due to the magnetic drift reso
nance, which is illustrated in a schematic view as figure 2. In 
the case of positive kr, the resonance locations are in the upper 
side of the poloidal cross section. In the case of the negative 
kr, the resonance locations are in the lower side, as seen from 
the resonance condition equation (2).

3. Quasi-linear parallel momentum flux

In this section, the toroidal momentum flux by the EGAM 
is described. Based on the eigenmode analysis shown in the 
previous section, the poloidal structure of the velocity field, 

∥ω ωv , vr, ,  (the radial velocity, and the parallel velocity pertur
bations), is calculated. Then, by using the expressions of the 
velocity perturbations, the toroidal momentum flux is derived 
in the framework of the quasilinear theory. Finally, the mag
nitude of the momentum flux induced by the magnetic drift 
resonance is compared with this induced by other processes, 
such as turbulence effects and the collisional momentum 
transfer from the fast ions to the bulk ions.

3.1. Poloidal structure of momentum flux

The parallel momentum flux by the GAM is defined as

[ ]∥ ∥Π = ω ω
∗Re v v .r r, , (5)

Since the toroidal mode number of the GAM is zero, the sym
metry breaking of the parallel wavenumber spectrum is not 
necessary unlike in the case of the intrinsic torque by turbu
lence [5, 6, 8]. So, the poloidal structures of the velocity per
turbations are important to determine the momentum flux in 
the case of the GAM.

The radial velocity fluctuation is calculated from the ×E B 
drift velocity, and the parallel velocity fluctuation, ωv ,∥ , is 

obtained by taking the moment of the velocity distribution of 

the bulk ion, ( )δ ωf
i , as

φ= − ∂ω θ ωr
v

1
,r, (6)

∥ ∥
( )∫

∑ ∑

δ

φ

=

=

ω ω

θ θ

=−∞

∞

=−∞

∞

f

u

v v d v

e e ,

i

m
m

m

l
m l

l

,
3

i
,

i
 

(7)

where the coefficient um,l is given in appendix B. If we neglect 
the magnetic drift resonance and truncate the poloidal modes 
at =±m 1, the expressions of the parallel and the radial 
velocity fluctuations are reduced to

∥
φ
ω τ

θ= − +ω ⎜ ⎟
⎛
⎝

⎞
⎠

k

q
v i

1

2
1 cos ,,

r 0
2 (8)

φ
ωτ

θ= −ω
k

r
v cos ,r,

r 0 (9)

which agree with the previous theories. The poloidal structures 
of the velocity fluctuations of the branch due to the magnetic 
drift resonance are shown in figure 3. Around the resonance 
locations, steep structures appear, and the magnitudes of the 
real and imaginary parts are comparable, which indicates a 
large phase shift. In particular, at the resonance locations, 
the magnitude of the radial velocity is enhanced several 
times compared to that without the magnetic drift resonance. 
Except near the resonance locations, the eigenfunctions of 
the parallel and radial velocities have similar structures with 
equations  (8) and (9), respectively. In order to clarify the 
phase relation between the parallel and radial velocities, 
the time evolution of their poloidal structures are calculated  
from θ θ= =ω

ω
ω

ω− −t tv , Re v e , v , Re v et t
,

i
r r,

i( ) [ ] ( ) [ ]∥ ∥ , which are 
shown in figure 4. The poloidal propagation can be seen around 
the resonance locations, while the eigenfunctions exhibit the 
standing wave patterns except around the resonance locations. 
It is clearly seen that the parallel and radial velocities are in 
phase only around the resonance locations. This phase rela
tion around the resonance location is completely different 

Figure 2. Schematic figure of the eigenfunction of the electrostatic potential perturbations with and without the magnetic drift resonance. 
The up–down antisymmetry of the eigenfunction is broken due to the magnetic drift resonance.

Nucl. Fusion 57 (2017) 036025



M. Sasaki et al

4

from the eigenfunctions in the limit without the magn etic drift 
resonance.

The parallel momentum flux is obtained from equations 
(5)–(7), which is shown in figure 5. The unit of the momentum 
flux is the square of the ion thermal velocity. The momentum 
flux is localized around the resonance locations. The localiza
tion of the flux can be understood as follows. Around the reso
nance locations, the radial and parallel velocities are in phase 
as shown in figure 4, which leads to the positive momentum 
flux. Except near the resonance locations, their phase differ
ence is /π 2 so that the momentum flux becomes zero in this 
region. If we neglect the magnetic drift resonance and the 
poloidal modes are truncated at =±m 1, the eigenfunction 
of the potential shows up–down antisymmetry as shown in 
figure 2. In this limit, the phase difference between the radial 
and parallel velocities is /π 2 in the entire region, so that the 
parallel momentum flux becomes zero. Breaking of the up–
down antisymmetry of the poloidal eigenfunction, which is 
due to the magnetic drift resonance, is essential for getting the 
finite momentum flux. The poloidally averaged momentum 

flux, ∥Πr , is evaluated in the dimensional form as

ρ
φ

Π ∼ −
∗B

e

T
10 sgn v ,

i
r

3 0
2

T
2〈 〉 ( )∥ (10)

where ( )sgn B  is the sign of the magnetic field, vT is the ion 
thermal velocity, and ρ∗ is defined as /ρ ρ=∗ r. The sign of the 
momentum flux depends only on that of the magnetic field. 
In order to clarify the origin of the sign of the momentum 
flux, the relation of the parallel momentum flux with the ion 
heating rate by the GAM is discussed below. The ion heating 

Figure 3. Poloidal eigenfunction of the parallel and radial velocity perturbations in the case of τ= = = =q k n3, 0.5, 0.12, 0.015,hr  
Λ = =u0.1, 50 0 . For the radial velocity, ωrvr,  is plotted. The eigenfunctions in the limit without the magnetic drift resonance are also 
shown as a dashed curve. The dashed black lines correspond to the resonance locations.

Figure 4. Time evolution of the poloidal structures of the (a) parallel and (b) radial velocity perturbations. The dashed white lines 
correspond to the resonance locations. For the radial velocity, ωrvr,  is plotted.

Figure 5. Poloidal structure of the parallel momentum flux by 
EGAM.

Nucl. Fusion 57 (2017) 036025
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rate is evaluated by the product of the current perturbation ωJ  
with the electric field perturbation ωE  as [15]

[ ] ∥
( )∫ δ φ⋅ ≈− ∂ω ω ω θ ω

∗ − ∗⎡
⎣⎢

⎤
⎦⎥J E q fRe 2Re v d v .i1 3 (11)

The ion heating rate of the EGAM which we focus on is ana
lyzed in [15]. It has a poloidal structure similar to the par
allel momentum flux. By using the expression of the ion 
heating rate equation  (11), the parallel momentum flux can 
be rewritten as

Π ≈ ⋅ω ω
∗J EB

q

r
sgn Re .r ( ) [ ]∥ (12)

Since the ion heating rate is always positive in the case of lin
early unstable EGAM [15], the sign of the parallel momentum 
flux is determined only by that of the magnetic field.

3.2. Momentum channeling by EGAM

In this section, the magnitude of the momentum flux is dis
cussed, comparing that induced by the EGAM with that 
induced by the other processes. Here we consider the intrinsic 
torque by the turbulence [5] and the collisional momentum 
transfer from the fast ions to the bulk ions. The radial shear of 
the mean parallel velocity, ∥′V , in a stationary state is evaluated 
as [5]

( )∥
∥

( )
∥

( )

∥∫χ χ
=
Π +Π

−′
φ φ

V
r

rS r r
1

d ,
r
turb

r
GAM

 (13)

where ∥
( )Πr
turb  is the momentum flux by the turbulence, ∥

( )Πr
GAM  

is the momentum fluxes due to the GAM, χφ is the turbulent 
diffusion coefficient, and ∥S  is the momentum source, which is 
due to the collisional momentum transfer from the fast ions. 
The processes we consider is summarized in figure 6.

First, the comparison with the momentum source term is 
described. The momentum source term is estimated as

( )∥∫ ∫ ν= Λ
r

rS r r
r

r u r
1

d
1

d .ih 0 0 (14)

Here, νih is the collision frequency between the bulk and the 
fast ions. The ratio of the momentum flux by the GAM with 
the collisional momentum transfer is evaluated as

( )
∥

( )

∥∫

ρ
ν

φ
Π

∼
Λ
| |

−

−
∗

r rS r r ud

10
.

ih

r
GAM

1

3 2

0 0
0

2 (15)

This ratio becomes order of unity when the amplitude of the 
GAM is large φ ∼ 10 . For instance, when ρ ν= =∗

− −10 , 10ih
2 8 

and φ = 10 , the ratio becomes unity. Hence, the parallel 
momentum flux due to EGAM can not be neglected compared 
to the collisional momentum input from the fast ions.

Next, a comparison with the intrinsic torque by the turbu
lence is shown. The momentum flux due to the turbulence is 
evaluated as [9]

ˆ∥
( ) ρ χΠ ∼− ∗

qR

s c L

1

2

1
,ir

turb

s T
2 (16)

where LT is the scale length of the temperature profile. The 
ratio of the momentum flux by the GAM with that by the tur
bulence can be estimated as

ˆ∥
( )

∥
( ) ρ φ
Π

Π
∼ | |−

∗
− sL

qR
10 .

r
GAM

r
turb

3 2 T
0

2 (17)

Here, the thermal diffusion coefficient χi is estimated as the 
gyroBohm diffusion χ ρ∼ Lvi iT

2
T/ . This ratio also becomes 

order of unity when the amplitude of the GAM is large φ ∼ 10 . 
In the case that / ˆρ φ= = = = =∗

− L R q s10 , 0.3, 3, 1, 12
T 0 , 

this ratio becomes unity. Therefore, EGAMs can play an impor
tant role of momentum channeling from the fast ions to the 
bulk ions. This process would have a substantial impact on the 
generation of the toroidal rotation.

4. Summary

Toroidal momentum channeling by EGAM is proposed in 
the framework of the quasilinear theory. A branch due to the 
magn etic drift resonance is focused on, and the eigenfunctions 
of the electrostatic potential and the velocity field is calculated. 
The eigenfunction of the electrostatic potential has up–down 
antisymmetric property in the poloidal direction without the 
magnetic drift resonance, and the toroidal momentum flux by 
the EGAM is zero. If the magnetic drift resonance is consid
ered, the up–down antisymmetry in the poloidal eigenfunc
tion is violated, and the toroidal momentum flux becomes 
finite. Comparing its magnitude to the other processes such 
as the externally momentum input, and the turbulent residual 
stress, the momentum flux by the EGAM is found significant 
in the total momentum balance. This suggests that EGAMs 
may be used as control knobs for the toroidal rotation.
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Appendix A. Expressions of Im,l and Hl

The expressions of Im,l is given as

ω ω

α α α

= − −

− + −

=

− +

⎜ ⎟
⎛

⎝
⎜

⎞

⎠
⎟ ⎛

⎝
⎞
⎠I

k q

m
Z

q
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k q

1
2
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2 ,

m l

m m m

, 0
r
2

r
2 2

1 1( )
 

(A.1a)

( )β β= −=± ±I
k q

i
2

,m l m m, 1
r

1 (A.1b)

and | |>Im l, 1 is neglected, which corresponds to keeping terms 
up to the ordering of kr

2. Here, Z(x) is the plasma dispersion 
function. The functions αm and βm for ≠m 0 are introduced as

α
ω ω ω

ω
ω

= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎫
⎬
⎭

⎛
⎝

⎞
⎠

q

m

q

m

q

m

m

q
Z

q

m2
,m

2 3

 

(A.2a)
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 (A.2b)

These functions at m  =  0 are defined as /α = −= 3 2m 0  and 
β == 0m 0 . The expression of Im,l has terms related to the plasma 
dispersion function, which causes the Landau damping. The 
expression of Hl is

∮ ( )
( )
ω θ
ω ω θ

θ
π

=
−

θ

⊥

−
H n J kv k2

sin e

sin

d

2
.l h h

l

0 ,
2

r

i

D
2 (A.3)

Here, this integral has the resonance due to the magnetic 
drift resonance as in equation (2), which can destabilize the 
EGAMs [15].

Appendix B. Expressions of um,l

The expressions of um,l is given as
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where αm and βm are given in equations  (A.2a) and (A.2b), 
respectively. When = ±m 0, 1, um,l is expressed as
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