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Eigenmode analysis of geodesic acoustic modes (GAMs) driven by fast ions is performed, based

on a set of gyrokinetic equations. Resonance to the magnetic drift of the fast ions can destabilize

GAMs. A new branch is found in the family of GAMs, whose frequency is close to the magnetic

drift frequency of the fast ions. The poloidal eigenfunction of this branch has bump structures in

the poloidal direction where the resonance of the magnetic drift with the mode is strong. The ion

heating rate by the GAMs is evaluated in the framework of quasi-linear theory. The heating is

localized poloidally around the resonance locations. Owing to the bumps in the eigenfunction, the

magnitude of the heating is much larger than that estimated without the magnetic drift resonance.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4963397]

I. INTRODUCTION

The importance of geodesic acoustic modes (GAMs)

on turbulent transport in magnetically confined plasmas

has been recognized.1,2 GAMs are driven by the

coupling of micro-turbulence,3–5 and/or by fast ions.6–8

Experimental observations show that GAMs induced by

fast ions (EGAMs) have much larger amplitude compared

to those driven by turbulence.9–12 Thus, the impacts of

EGAMs on bulk plasmas are expected to be significant.

Numerical simulation reveals the nonlinear dynamics of

EGAMs, such as the coupling of EGAMs with turbu-

lence,13 nonlinear saturation of EGAM,14 frequency

chirping15 and subcritical excitation of GAMs due to self-

nonlinear coupling.16 A process of energy channeling from

energetic particles to bulk ions via GAMs has been pro-

posed (GAM channeling),17 and experimental validations

are progressing.18,19

In the previous theory, resonance of GAMs with the

transit motion of fast ions has been investigated. Two

kinds of EGAMs have been reported; one whose fre-

quency is the ordinary GAM frequency (cs=R, cs is the

sound velocity, and R is the major radius of plasma), and

which is close to the transit frequency of fast ions.6,20–27

Actually, several branches have been observed in experi-

ments.11,19 The relation between the ordinary GAM

branch and the EGAM has been studied, and a selection

rule has been reported.22–24 When the energy of fast ions

becomes large, the magnetic drift motion of fast ions can

exceed the effect of the transit motion. In such a situation,

resonance due to the magnetic drift motion of fast ions

should be considered.

In this study, we report an eigenmode analysis of a new

(third) branch of GAMs driven by the resonance due to the

magnetic drift motion of fast ions. The new branch has a

frequency close to the magnetic drift frequency of fast ions.

The eigenfrequency and the poloidal eigenfunction are

obtained, based on gyrokinetic equation. The dispersion

relation obtained in this paper includes the contributions

from modes with arbitrary poloidal mode numbers m, which

is an extension of the previous studies where the included

modes are truncated to keep only m ¼ 61.22 The poloidal

eigenfunction of the new branch is shown to have bumps in

the poloidal direction. The ion heating rate by the GAMs is

evaluated in the framework of quasi-linear theory. The

heating rate is shown to be localized poloidally around the

resonance locations. The paper is organized as follows. A

model for analyzing EGAMs is given in Sec. II. In Sec. III,

the theoretical formulation of the dispersion relation is

described, and the eigenfrequency and the eigenfunction

are investigated. In Sec. IV, the ion heating rate by the

GAMs is evaluated by using the obtained eigenfunctions

within the framework of the quasi-linear theory. Summary

is given in Sec. V.

II. MODEL

We consider a simple tokamak equilibrium with circular

magnetic surfaces. The equilibrium magnetic field is given by

B ¼ B0

1þ � cos h
ef þ

�

q
eh

� �
; (1)

where � ¼ r=R� 1 is the inverse aspect ratio, r and R are

the minor and major radii, respectively, and q is the safety

factor. The poloidal and toroidal angles are denoted as h and

f, and their unit vectors are eh and ef, respectively. We use

the following normalization:
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t! t
vT

R
; v? !

v?
vT
; vk !

vk
vT
; k ! k

vT

Xci
; E ! E

Ti
;

Fj !
Fj

n0

;
e/
Ti
! /;

where vT ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
is the ion thermal velocity, Xci is the

ion cyclotron frequency, and n0 is the background plasma

density. The radial wavenumber of the GAM is expressed by

k, E is the kinetic energy of particles, Fj is the velocity distri-

bution function of the mean component of the j-th particle

species, and / is the electrostatic potential perturbation of

the GAM.

The perturbed velocity distribution function to the

GAM fluctuations, df ðjÞ, can be expressed as df ðjÞ ¼ J0ðkv?Þ
/ @Fj

@E þ gðjÞ, where j represents the particle species, bulk

ion or fast ions, and J0 is the zeroth order Bessel function.

Here the first term on the right hand side is the adiabatic

response to potential fluctuations, and the second term is

the non-adiabatic response. The non-adiabatic component

gðjÞ is expressed as gðjÞðv; rÞ ¼ G
ðjÞ
x ðv; hÞe�ixtþikr þ c:c:, and

G
ðjÞ
x satisfies a linear gyrokinetic equation28

xþ ixt@h � xd sin hð ÞG jð Þ
x ¼ �xJ0 kv?ð Þ/x

@Fj

@E : (2)

Here, the transit frequency is denoted by xt ¼ vk=q, and

xd ¼ kðvk2 þ v?2=2Þ is the magnetic drift frequency associ-

ated with the geodesic curvature. Assuming adiabatic elec-

trons, the quasi-neutrality condition is given asX
j

hJ0GðjÞx i � /x ¼ sð/x � /x;0Þ; (3)

where the bracket h� � �i ¼
Ð
� � � d3v represents a velocity inte-

gral, s ¼ Ti=Te is the normalized ion temperature, and /x;0

is the magnetic surface-averaged /x. The detailed derivation

of Eq. (3) is given in Appendix A. The properties of the new

branch of EGAM are investigated from Eqs. (2) and (3) in

Secs. III and IV.

The velocity distribution function of the bulk ions Fi is

assumed to be Maxwellian, Fi ¼ p�3=2e�Ei . For transparency

of the analysis, the fast ions’ distribution, Fh, is taken as

Fh ¼
nh

2pu2
0

d u� u0ð Þd K� K0ð Þ; (4)

where nh is the density of energetic particles normalized by

n0, u0 is the speed of the fast ions normalized by the ion ther-

mal velocity, and K is the pitch angle defined as the parallel

velocity normalized by the total velocity.27 This distribution

corresponds to the limit that the width of the pitch angle DK
is much smaller than K0. In reality, this condition corre-

sponds to a case before the slowing down and the pitch angle

scattering. We also assume that the fast ions are passing par-

ticles, holding the condition, K0 >
ffiffiffiffiffiffiffiffi
r=R

p
.

III. EIGENMODE ANALYSIS

In this section, a new branch of EGAMs is shown.

Equation (2) has two kinds of resonances in accordance with

the transit frequency and the drift frequency of the fast ions.

Their frequencies are introduced as xh � xtðu0;K0Þ;xD

� xdðu0;K0Þ, which are functions of the velocity and the

pitch angle of the fast ions. Thus, the dominant resonance

depends on the velocity and the pitch angle of the fast ions.

We can consider two limiting cases; (i): In the limit that the

transit frequency of the fast ions is much larger than the drift

frequency, xh � xD, the resonance due to the transit fre-

quency becomes important, and the solution with x � xh

appears.6,7,22,24 (ii): In the limit that the resonance due to the

drift frequency becomes dominant, xh � xD, a new solution

with a frequency close to the drift frequency of the fast ions

appears, x � xD. We focus on the limiting case (ii) where

the resonance due to the magnetic drift frequency becomes

important. In the following, the eigenfrequency is assumed to

satisfy the condition, x � xG � xD � xh. The assumptions

in this paper can be summarized by the conditions for the

speed and pitch angle of the fast ions and for the radial wave-

number of the EGAM as

u0 �
���� 2K0

kq 1þ K2
0

� � ����; (5)

jK0j >
ffiffiffiffiffiffiffiffi
r=R

p
; (6)

jkj � 2xG

u2
0ð1þ K2

0Þ
: (7)

We assume that the radial wavelength of the GAM is

much larger than the ion gyro-radius, and use an ordering in

the small parameter k � 1. The resonance due to the mag-

netic drift frequency, xD sin h, is inhomogeneous in the

poloidal direction, while the transit frequency is homoge-

neous. Thus, the poloidal inhomogeneity of the eigenfunc-

tion becomes prominent when the magnetic drift resonance

is dominant, so that the mode truncation is not suitable for

the new branch. The contributions from modes with arbitrary

poloidal mode numbers are calculated without assuming the

amplitude of the poloidal harmonics j/m=/0j � OðkmÞ. This

is an extension of previous studies where the eigenfunction

is assumed to follow the above ordering, and is truncated to

keep only m ¼ 61.22,24

A. Derivation of the dispersion relation

In this subsection, the dispersion relation of the EGAMs

which includes the magnetic drift resonance is derived from

Eq. (2). The velocity integrals of the responses of the bulk

ions and of the fast ions to the GAM potential are calculated.

First, the response of the bulk ions to the GAM poten-

tial, G
ðiÞ
x , is described. For the bulk ions, the transit frequency

is assumed to be much larger than the magnetic drift fre-

quency, xtðvTÞ � xdðvTÞ. Thus, only the resonance due to

the transit frequency, which leads to the ion Landau damp-

ing, is considered for the bulk ions. The response G
ðiÞ
x is

obtained from Eq. (2) as28

GðiÞx ¼ J0Fi

X1
m¼�1

/meimh
X1

l¼�1
Cm;le

ilh; (8)
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where Cm;l is expressed as

Cm;l ¼
X1

p¼�1
�1ð ÞpilJp dð ÞJl�p dð Þ x

x� mþ pð Þxt
: (9)

Here, d ¼ xd=xt is an effect of the finite orbit width, which

is treated as a smallness parameter. The coefficient Cm;l has

resonances with respect to the harmonics of the transit fre-

quency, which corresponds to the Landau damping. It is

noted that the order of Cm;l follows Cm;l � OðdlÞ. Here, we

keep the terms up to d2, and consider the contributions of

modes with arbitrary poloidal mode numbers without assum-

ing the ordering for /m. In this approximation, the lowest

order terms of the finite orbit width effect are included,

which corresponds to the process of /m coupling to its side-

band modes, /m61. If one truncates the poloidal mode num-

ber at m ¼ 61, the previous theory is reproduced.22,24 The

coefficient Cm;l can be approximated as

Cm;l¼0 � 1� d2

2

� �
x

x� mxt

þ d2

4

x

x� m� 1ð Þxt
þ x

x� mþ 1ð Þxt

� 	
; (10a)

Cm;l¼61 � i
d
2

x
x� mxt

� x

x� m61ð Þxt

� 	
: (10b)

The order of Cm;jlj>1 in d is higher than d2, which we neglect.

The velocity integral of the response of the bulk ions,

Eq. (8), is calculated as

hJ0GðiÞx i ¼
X1

m¼�1
/meimh

X1
l¼�1

Im;le
ilh; (11)

where Im;l is defined as

Im;l¼0 ¼ hJ2
0FiCm;l¼0i

¼ � 1� k2

2

� �
qx
m

Z
qx
m

� �

� k2q2

4
am�1 þ amþ1 � 2amð Þ; (12a)

Im;l¼61 ¼ hJ2
0FiCm;l¼61i

¼ i
kq

2
bm61 � bmð Þ; (12b)

and Im;jlj>1 is defined as zero. Here, Z(x) is the plasma disper-

sion function. The functions am and bm for m 6¼ 0 are intro-

duced as

am ¼
qx
m

� �2

þ qx
m

� �3

þ qx
m
þ m

2qx

( )
Z

qx
m

� �
; (13a)

bm ¼
qx
m
þ qx

m

� �2

þ 1

2

( )
Z

qx
m

� �
: (13b)

These functions at m¼ 0 are defined as am¼0 ¼ �3=2 and

bm¼0 ¼ 0.

Next, the response of the fast ions to the GAM potential,

G
ðhÞ
x , is described. For the fast ions, the magnetic drift fre-

quency is assumed to be much larger than the transit fre-

quency, xD � xh. For the transparency of the argument, the

resonance of the transit frequency is neglected, and only the

resonance due to the magnetic drift frequency is considered.

In this limit, the response G
ðhÞ
x can be obtained from Eq. (2) as

G hð Þ
x ¼ �

x
x� xd sin h

J0

@Fh

@E /x hð Þ: (14)

The response function of the fast ions features a resonance

due to the magnetic drift. This resonance gives the new

unstable branch. Keeping the resonance due to the magnetic

drift, the velocity integral of Eq. (14) is obtained as

hJ0GðhÞx i ¼
X1

m¼�1
/meimh

X1
l¼�1

Hle
ilh; (15a)

Hl ¼
þ

2nhJ0 kv?;hð Þ2k
x sin he�ilh

x� xD sin hð Þ2
dh
2p
: (15b)

The integral Hl resonates at x ¼ xD sin h, which gives an

unstable branch of the EGAM.

The eigenequation is derived by substituting Eqs. (11)

and (15a) into Eq. (3) as

X1
m¼�1

sþ 1�
X1

l¼�1
ðHlþ Im;lÞeilh

" #
/meimh� s/x;0 ¼ 0: (16)

Equation (16) can be rewritten in a matrix form as

X1
�¼�1

Dl;�/� ¼ 0; (17a)

Dl;� ¼ sdl;�ð1� dl;0Þ � dl;� � ðHl�� þ I�;l��Þ; (17b)

where l is an integer (l ¼ �1;…;1), and dl;� is the

Kronecker delta. The first term in Eq. (17b) stems from

the electron dynamics, the second term is the contribution of

the adiabatic response of the bulk ions, and the third term

with I�;l�� and Hl�� come from the non-adiabatic responses

of the bulk and the fast ions, respectively. The magnetic drift

resonance and the Landau damping are included self-

consistently, which are included in Hl�� and I�;l�� , respec-

tively. The dispersion relation is obtained as

det Dl;� ¼ 0: (18)

If one truncates the poloidal mode number at jmj ¼ 1, the

dispersion relation without the contribution of the fast ions

reproduces the results reported in Refs. 28 and 29; solutions

with the ordinary GAM frequency and the ion sound wave

branches are obtained. Here, the ordinary GAM frequency,

xG, is approximated as

xG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

4
þ 1

s

� �
1þ 46s2 þ 32sþ 8

7sþ 4ð Þ2q2

" #vuut ; (19)

in the large safety factor limit.28
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B. Eigenfrequency and eigenfunction

The dispersion relation, Eq. (18), and the eigenequation,

Eq. (17a) are solved numerically, and the eigenfrequency

and eigenfunctions are described in this section.

Figure 1 illustrates the eigenfrequency as a function of

the velocity of the fast ions. The real part of the eigenfre-

quency has solutions with Rex � xG;xD. The solution with

the magnetic drift frequency appears owing to the magnetic

drift resonance, which is the new solution in the family of

the GAMs. The frequency of the unstable branch is close to

xD when xD < xG, and it converges to xG when xD > xG.

The frequency of the stable branch changes from xG to xD,

with the increase of the fast ions. The growth rate of the

unstable branch has a maximum value at xD ¼ xG. The

GAMs are found to be destabilized by the magnetic drift res-

onance of the fast ions. It should be noted that, in the previ-

ous studies, the effect of the magnetic drift of the fast ions

is included perturbatively to modify the resonance due to

the transit motion of the fast ions, and the magnetic drift

resonance is not considered. The parameter dependence of

the eigenfrequency of the branch with x � xG is discussed

in Appendix B.

The poloidal eigenfunction is calculated by /x ¼
P

m

/meimh, where /m is obtained from the eigenequation

Eq. (17a). The poloidal eigenfunction of the electrostatic

potential is shown in Fig. 2(a). The real part of the eigen-

function has bumps where the magnetic drift resonance is

satisfied, in addition to the sin h dependence as is predicted

by the previous studies. The imaginary part of the eigenfunc-

tion appears near the resonance locations, which indicates a

phase shift. The characteristic features such as the bump

structures and the phase shift exist in the upper part of the

poloidal cross section because positive k is assumed. In

the case of negative k, the characteristic features appear in

the bottom part of the poloidal cross section. The poloidal

mode spectrum of the eigenfunction is shown in Fig. 2(b).

The eigenfunction has much larger poloidal harmonics

than that assumed in the previous studies as j/mj=/0 � km,

which is owing to the bump structures of the eigenfunction.

The distance between the resonant locations corresponds to

m � 3 in the case of Fig. 2(a), so that there is a peak at m¼ 3

in 2(b). The poloidal structure of the density fluctuations of

the electrons, the bulk ions, and the fast ions can be calcu-

lated as

nðeÞx ¼ sð/x � /x;0Þ; (20a)

nðiÞx ¼ �/x þ hJ0GðiÞx i; (20b)

nðhÞx ¼ hJ0GðhÞx i: (20c)

As is shown in Fig. 3(a), the electron density fluctuation has

bumps similar to those in the electrostatic potential, and

bumps for the fast ions are localized near the resonance loca-

tions. The time evolutions of the density fluctuations are

shown in Figs. 3(b)–3(d), where the time evolution is calcu-

lated by Re½nðjÞx e�ixt	. The phase shift can be seen near the

resonance locations.

IV. DISCUSSIONS OF IMPACTS ON BACKGROUND
PLASMAS

In this section, effects of the xD-branch on the back-

ground plasmas such as ion heating and turbulence are

discussed.

FIG. 1. Dependence of (a) eigenfrequency and (b) growth rate against the

velocity of fast ions. The calculation is performed by using the following set

of parameters; q ¼ 3; s ¼ 0:5; k ¼ 0:12; nh ¼ 0:015;K0 ¼ 0:1.

FIG. 2. (a) Poloidal eigenfunction in the

case of q ¼ 3; s ¼ 0:5; k ¼ 0:12; nh

¼ 0:015;K0 ¼ 0:1; u0 ¼ 5. The eigen-

function without the energetic particle

effect is also shown as a dashed curve.

The eigenfunction has bumps and the

imaginary part appears near the reso-

nance locations. (b) Poloidal mode

decomposition of eigenfunction. The

dotted line shows km, which corresponds

to amplitudes of the poloidal modes

assumed in previous studies.
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The GAMs heat the bulk ions through the ion Landau

damping. The ion heating rate, P, is evaluated within the

framework of the quasi-linear theory. By using the eigen-

functions obtained above, P is expressed by the product of

the electric field, Ex, with the current, Jx, as

P ¼ Re½Ex � J
x þ E
x � Jx	;
¼ �2Re½hxtdf ðiÞx i@h/



x	 � 2Im½hxddf ðiÞx i/



x sin h	: (21)

The poloidal structure of P is illustrated in Fig. 4. The dotted

line in Fig. 4 shows the heating rate evaluated without

the deformation due to the magnetic drift resonance. The

localized ion heating around the resonance locations is

owing to the bump structures of the eigenfunction. The

poloidal angle averaged heating rate which is normalized by

the energy loss of the bulk plasma, Wps�1
E , can be estimated

as
Þ

Pdh=ð2pÞðWps�1
E Þ
�1 ¼ 0:37 when sE ¼ 100, where Wp

is the stored energy and sE is the energy confinement time

normalized by vT=R. In this manner, the ion heating effect of

a large amplitude GAM cannot be neglected with respect to

the total energy balance of the bulk plasmas.

The xD-branch accompanies a sheared poloidal flow

similar to the standard GAM, which has a suppression effect

on turbulence. One of the characteristics of the branch with

x � xD is that the eigenfrequency is proportional to the radial

wavenumber. Thus, the radial group velocity is much large

compared to the standard GAM branch, and the radial group

velocity is comparable to the radial phase velocity as @kx
� x=k � u2

0. Noting that the unit of this velocity is vTqi=R.

Therefore, the effects of this branch on turbulence and on

bulk ion propagate to distant locations in the radial direction.

It is noted that there is a report that the turbulence transport

increases with the excitation of the EGAM.13 Thus, detailed

researches are necessary to understand such phenomena by

considering the nonlocal radial structure of the EGAM and

the coupling with turbulence, which is a future work.

V. SUMMARY

Eigenmode analysis of EGAMs is performed, based on

a set of gyrokinetic equations. Resonance to the magnetic

drift of the fast ions is shown to destabilize GAMs. A new

branch is found in the family of GAMs, whose frequency is

close to the magnetic drift frequency of the fast ions. The

poloidal eigenfunction of this branch has bump structures

and phase shift in the poloidal direction where the resonance

of the magnetic drift with the mode is strong. The ion heating

rate by the GAMs is evaluated in the framework of quasi-

linear theory. The heating is localized poloidally around the

resonance locations. Owing to the bumps in the eigenfunc-

tion, the magnitude of the heating rate is much larger than

that estimated without the magnetic drift resonance.
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APPENDIX A: DERIVATION OF CHARGE
QUASI-NEUTRALITY

The derivation of the quasi-neutrality condition, Eq. (3)

is explained. The quasi-neutrality condition can be written

as
P

jejhdf
ðjÞ
r i ¼ 0, where ej is the electric charge of the j-th

species and df
ðjÞ
r is the perturbed distribution function written

in the real coordinate, and the summation is performed

with respect to the electron, bulk ion, and fast ions. df
ðjÞ
r is

written as28

df ðjÞr ¼ �/@EFj þ ge�ik?�q; (A1)

where q ¼ b� v, and b is the unit vector in the direction of

the magnetic field. By comparing the expression of df ðjÞ with

that of df
ðjÞ
r , the distribution function in the real coordinate

can be rewritten as

df ðjÞr ¼ df ðjÞe�ik?�q � /@EFjð1� J0ðk?v?Þe�ik?qÞ: (A2)

The quasi-neutrality condition can be expressed in the gyro-

center coordinate by using Eq. (A2) asX
j

ejhJ0ðkv?Þdf ðjÞiþ
X

j

ejhð1� J0ðkv?Þ2Þ@EFji ¼ 0: (A3)

The second term of Eq. (A3) for the bulk ions can be calcu-

lated as

hð1� J0ðkv?Þ2Þ@EFji ¼ �ð1� I0ðkÞe�kÞ; (A4)

where I0ðkÞ is the zeroth order modified Bessel function.

Equation (3) is obtained by substituting the expression of

df ðjÞ into the quasi-neutrality condition. Here, it should be

noted that we assume nh � 1, and we neglect the term corre-

sponding to the polarization density of the fast ions and keep

terms related to the resonance.

APPENDIX B: EIGENFREQUENCY OF THE BRANCH
WITH x � xG

The analytical expression of the eigenfrequency of

the xG-branch is derived in order to compare the results

reported in Refs. 22 and 23. We considered a situation,

x� xD; q� 1, which is a similar condition discussed in

Refs. 22 and 23. In this limit, the responses of the bulk ions

and the fast ions, Eqs. (11) and (15a) can be simplified as

hJ0G ið Þ
x i � hJ2

0i þ
k

x
sin hþ 7k2

4x2
sin2hþ � � �


 �
/x; (B1)

hJ0G hð Þ
x i �

2nhJ2
0kx sin h
x

1þ 2xD

x
sin hþ � � �

� �
/x: (B2)

Combining these responses with Eq. (3), the following rela-

tion is obtained.

/x �
"

1þ 1

s

(
k

x
þ k2

x2
G;0

x2
sin2h� 1

2

� �

þ 2nhJ2
0kx sin h
x

1þ 2xD

x
sin hþ � � �

� �)#
/x;0;

(B3)

where xG;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7=4þ 1=s

p
. Averaging both sides of this

relation over the poloidal angle, the following dispersion

relation is obtained.

1�
x2

G;0

x2
� 4nhJ2

0kxD

k2x2
¼ 0: (B4)

Then, the analytical expression for the xG-branch can be

written as

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

G;0 þ nhu2
0CEP

q
; (B5)

where the numerical factor CEP is obtained as CEP

¼ 2J2
0ð1þ K2

0Þ. The numerical factor becomes CEP ¼ 3=2 in

the previous studies such as Refs. 22 and 23, where the dis-

tribution of the fast ions is assumed to follow a shifted

Maxwellian. Both the expressions are similar characteristics.

It is noted that the difference of the numerical factors stems

from the assumption of the fast ions’ distribution function.

The dependence of the frequency of the xG-branch on the

density of the fast ions is shown in Fig. 5.
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