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Abstract
The mutual interaction of drift wave-type modes and zonal flows causes the formation of
higher-order nonlinear structures. This study focuses on the spatio-temporal behavior of these
higher-order structures in a linear magnetized plasma. The structures include a solitary vortex, a
long-lived circumnavigating motion localized both radially and azimuthally, and a short-lived
packet of finer-scale fluctuations excited at the position of the solitary vortex. Observing the
time evolution of the two-dimensional cross-sectional structures revealed that the packet of
finer-scale fluctuations is trapped in the solitary vortex. The trapping times found are consistent
with the theoretical evaluation.

Keywords: magnetized plasma, zonal flow, solitary vortex, finer-scale fluctuations,
higher-order nonlinear structure, two-dimensional cross-sectional structure

(Some figures may appear in colour only in the online journal)

1. Introduction

Dynamic interactions between linearly unstable drift wave
and secondarily nonlinearly generated zonal flows [1, 2] have
been actively investigated in plasma turbulence owing to
its significant influence on plasma transport [3–5]. Geodesic
acoustic modes (GAMs), an oscillating branch of zonal flows

∗
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specific to toroidal plasmas, have also been the subject ofmany
studies [6]. The physics related to the interaction between
drift-wave and zonal flows is considered to share a common,
somewhat universal nature, at least from linear magnetized
plasmas to toroidal fusion plasmas. Consequently, research
has been advanced in fundamental linear magnetized plas-
mas. For instance, investigations into the intrinsic nature of
drift waves [7], transitions from drift wave to turbulence [8],
direct observations of zonal flow generation [9], and interac-
tions between drift wave and zonal flows [10–13] have been
conducted.
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Theoretical and simulation studies suggest that spatio-
temporal dynamics of drift waves interacting with zonal flows
can be significantly influenced by the trapping of higher-order,
nonlinearly excited coherent structures. The trapping in zonal
flows has been found by Kaw et al [14], as a result of phase-
space dynamics (formation of coherent vortex in the phase-
space). The trapping mechanism has also been applied to the
interaction between drift wave andGAMs [15–17]. In this con-
text, the spatial localization of the structures by the station-
ary zonal flows [18], and the azimuthal bunching of the struc-
tures by the streamer [19] have been found to be caused by the
trapping. The trapping mechanism is independent of magnetic
field configurations, so that it should be possible to validate
the mechanism in linear magnetized plasmas. However, the
trapping of the structures has not yet been directly observed
experimentally and as such should be demonstrated.

Our recent experimental studies of linear magnetized
plasma observed higher-order coherent structures in the sys-
tem of drift wave-type modes and the secondary nonlin-
early generated zonal flow [20]. The higher-order structures
includes a spatially localized, long-lived solitary vortex and
short-lived packet of finer-scale fluctuations. The solitary vor-
tex is excited by the interaction between the drift wave-type
modes and the zonal flow [21]. The finer-scale fluctuations
(termed ‘splash’ in [20]) have shorter lifetimes and excited
at the same azimuthal position as the solitary vortex [20].
However, the finer-scale fluctuations were only observed at
a specific radial position, and temporal variations in the two-
dimensional cross-sections had not been obtained.

In this study, we experimentally identified the trapping of
the finer-scale fluctuations in a solitary vortex in linear mag-
netized plasma. The time-resolved two-dimensional analysis
allows us to observe linearly unstable drift wave-type modes
and the secondary nonlinearly generated zonal flow, as well
as the solitary vortex and the short-lived packet of finer-scale
fluctuations. The trajectory of the finer-scale fluctuations cir-
culating in the solitary vortex is detected, demonstrating that
they are trapped in the solitary vortex. The time at which finer-
scale fluctuations were trapped was in close agreement with
the theoretical evaluation.

2. Experimental setup

A cylindrical argon plasma with a diameter of ∼0.1m and
an axial length of 3.74m was produced at a linear plasma
device, LMD-U [20]. The plasma was excited by radio fre-
quency (RF) waves and was radially bounded by a magnetic
field with no external source of momentum. The operational
parameters are 3 kW RF power, 900G magnetic field strength
(B), and 0.68 Pa argon gas pressure. Typical plasma paramet-
ers are central plasma density of ∼6× 1018 m−3 and ∼2.5 eV
electron temperature (Te). The major diagnostic tools used in
this study are two multi-channel arrays of Langmuir probes.
One is an azimuthal array with 64 probes located at a radius
of r= 4 cm, which is the position where the density gradient

is at its maximum. Another array consists of three radially
movable probes with a range of r= 1.5–7 cm. The Langmuir
probes measure the ion saturation current (Iis) and the floating
potential (V f), which are roughly proportional to the electron
density and the plasma potential, respectively. These measures
are obtained simultaneously during each discharge (0.5 s) and
sampled at a frequency of 1MHz.

3. Fundamental observations

Figure 1(a) shows the dependence in time and azimuthal angle
of Iis at r= 4 cm by the azimuthal probe array. The steep dens-
ity peeks steadily propagates in the electron diamagnetic dir-
ection. The fundamental mode (m= 1, fDW = 1.2 kHz) and its
higher harmonics have the same phase velocity, where m is
the azimuthal mode number, which is related to the wavenum-
ber (kθ) via the expression, m= rkθ. As the fundamental
mode is observed in a region with a steep density gradient
(∇n/n∼ 100m−1). The linear dispersion relation of the drift
wave is given by fDW = (kθ

Te
eB

∇n
n )/(1+ ρ2k2θ) · 1

2π ∼ 1.8 kHz,
which aligns closelywith our experimental observation of fDW.
Consequently, the mode is considered to be of the drift wave-
type. Here, the drift wave-type mode and its harmonics is
referred to as the waves.

To understand how the solitary vortex and the packet of
finer-scale fluctuations are excited, a Galilean transform is
applied to figure 1(a); the linear phase shift in the azimuthal
angle along the propagation direction of the waves are sub-
tracted. The results are shown in figure 1(b). The red and yel-
low arrows in the figure display the density peaks of the solit-
ary vortex and packet of finer-scale fluctuations. The solitary
vortex and the packet of finer-scale fluctuations propagate
at 2.6× 103 π rad s−1 and 4× 103π rad s−1, respectively, in
the laboratory frame. A frequency filter (<1 kHz or >1 kHz)
was applied to figure 1(b) at the transformed azimuthal angle
θ ′ = 0.9 rad 2π−1 and was demonstrated in figures 1(c) and
(d). The excitation/damping of the density in the solitary vor-
tex and the amplitude envelope of the finer-scale fluctuations
are synchronized at a frequency of ∼0.4 kHz. The temporal
evolution of the floating potential fluctuation (0.1–1 kHz) at
r= 4 cm by the radially movable is shown in figure 1(e). The
figure indicates that the potential is also synchronized with the
frequency of the solitary vortex and the amplitude envelope
of the finer-scale fluctuations. Our previous studies reveal the
existence of the zonal flow in these experimental conditions
[20, 22]. The zonal flow has a frequency of about 0.4 kHz and
a radial wavenumber of 0.8π rad cm−1. Compared to the typ-
ical period of the waves, the solitary vortex has a long life-
time (∼1.2ms, which is equal to half of the typical zonal flow
period), while the packet of finer-scale fluctuations has a short
lifetime (around 0.2ms at this radius).

As the zonal flow and the waves interact, the waveform of
the waves is modified by the frequency of the zonal flow as it
propagates [21]. This change stems from the modulation of the
fundamental mode, which subsequently affects the amplitude
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Figure 1. (a) Spatio-temporal behavior of the ion saturation current (Iis) at a radius of r= 4 cm. The positive direction of the vertical axis
corresponds to the electron diamagnetic direction. (b) Galilean transformed (a). The azimuthal angle (θ) of the vertical axis in (a) is
transformed to θ ′ = θ− vpt, where vp denotes the phase velocity of the nonlinear wave. The red arrow indicates the propagation of a solitary
vortex and the yellow arrows highlight the propagation of the packet of finer-scale fluctuations. (c) Temporal behavior of Iis for the solitary
vortex (d) and for the packets of finer-scale fluctuations. (e) Temporal behavior of V f of the zonal flow.

and phase relationship with the harmonic waves. This leads to
the formation of a solitary vortex [21]. The excitation of finer-
scale fluctuations is also synchronized with this process.

4. Reconstruction of two-dimensional structure

To understand the propagation in the radial-azimuthal cross-
section of the finer-scale fluctuations, a modified template
method was used with the data collected from the azimuthal
probe array and the radially movable probe array. The tem-
plate method [23] is a technique of conditional averaging of
structures based on the correlation coefficient between a ref-
erence waveform and the time-varying waveform. The mod-
ified template method is a two-dimensional extension of the
one-dimensional template method for structure extraction in
turbulence.

Here, the reference waveform was generated in the follow-
ing iterative manner [23]. Initially, the reference waveform

was a cosine function that was uniform in the azimuthal angle,
as illustrated in figure 2(a). The cross-correlation function
between this initial reference waveform (denoted as N= 0,
figure 2(a)) and the spatio-temporal Iis from the azimuthal
probe array (figure 2(f)) was calculated. For this analysis, we
selected a specific azimuthal range, θ ′ = 0.78–1.0 rad 2π−1, to
include the solitary vortex and the packet of finer-scale fluc-
tuations, and used data from the last 0.3 s of a 0.5 s single
discharge within the spatio-temporal Iis. Peak times from the
cross-correlation were identified, as marked by the red points
in figure 2(g). Using these peak times as a focal point, the
subsequent reference waveform was obtained by averaging
the relevant spatio-temporal Iis (figure 2(b)). This process was
repeated: for example, peak times from the cross-correlation
between the updated reference waveform (N= 1, figure 2(b))
and the spatio-temporal Iis (figure 2(f)) were identified in
figure 2(h). The next iteration for the waveform was then pro-
duced, as shown in figure 2(c) for N= 2. This iterative refine-
ment continued until the 50th reference waveform, which had

3
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Figure 2. The process of two-dimensional reference waveform generated by the template method. (a)–(e) Iterative reference waveform with
N= 0, 1, 2, 10 and 50, where N denotes the iteration number. The resulting reference waveform is (e). (f) Spatio-temporal Iis of a partial
azimuthal range, θ ′ =0.78–1.0 rad 2π−1, where the Galilean transform was applied. (g)–(k) Cross-correlation function (CCF) between the
Nth reference waveform and spatio-temporal Iis (f). The red points indicate the correlation peaks.

achieved convergence (as demonstrated in appendix A). The
resulting reference waveform is shown in figure 2(e).

The method of reconstructing a cross-sectional structure
using the reference waveform is shown below [20]. A visual-
ized explanation is available in appendix B. The time, t0, was
calculated as the point in time when the correlation occurred
between the reference waveform and the spatio-temporal Iis
of the solitary vortex and the packet of finer-scale fluctuations,
where the Galilean transform is applied on the azimuthal probe
array data. The delay time for the ith period, τ , was defined
by the equation τ = t− t0(i). The relative azimuthal location
of the radially movable probe array with respect to the cor-
relation peak of the azimuthal probe array data, θi, was also
identified. Values from the radially movable probe array were
measured simultaneously at various radial positions. For each
radius, we reconstructed the azimuthal-temporal structure via
the conditional averaging of the values from the radially mov-
able probe array with respect to θi and τ . Here, the Iis and V f

of the radially movable probe array are normalized as Ĩis/̄Iis
and eVf/Te ≡ ϕ, where the˜and¯ represent fluctuation com-
ponents or time averages at each radial position. Thereafter,
ϕ denotes the normalized potential. Combining the azimuthal-
temporal structure of all the radial positions, an entire region
of the cross-sectional structure, Ĩis/̄Iis(θ,r, τ) or ϕ(θ,r, τ), was
obtained.

The cross-sectional zonal potential was obtained by filter-
ing the m= 0 signal from each radial and temporal compon-
ent. Singular value decomposition (SVD) analysis was used
to determine the other components [24, 25]. The waves and
the solitary vortex varied with the frequency of the zonal flow
(∼0.4 kHz); as a result, the structures were reconstructed by
adding the temporally varying structures at 0.4 kHz and its har-
monic at 0.8 kHz. The packet of finer-scale fluctuations was
then reconstructed by including the structures in the order of
the largest singular value of the SVD modes and considering
the dimension with the highest correlation coefficient with the
azimuthal probe array. The other SVD modes were treated as
noise and were therefore not considered in this analysis. The
Galilean transformation, which subtracts the linear phase shift
of the azimuthal angle along the direction of the wave propaga-
tion, is used to make the changes in the reconstructed struc-
tures more clearly.

5. Time evolution of two-dimensional spatial
structure

Figure 3(a) shows the temporal behavior of the zonal
flow (m= 0 fluctuation), VZF ≡ ρ∂ϕ/∂r, where ρ= cs/ωCi =

(eTe/mi)
1/2

/(eB/mi)≈ 1.1 cm is the Larmor radius, cs is the

4
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Figure 3. (a) Temporal behavior of the zonal flow (r= 3–4.5 cm). The hatched region shows the time in the excitation of the solitary vortex
and the packet of finer-scale fluctuations. (b)–(g) Two-dimensional structure of potential fluctuations for the zonal flow (b) and (e), the
waves and the solitary vortex (c) and (f), and the amplitude envelope of the packet of finer-scale fluctuations (d) and (g). (b)–(d) show the
structures at τ =−1ms, and (e)–(g) show the structures at τ = 0ms. The red arrow in (g) indicates the propagation direction of the packet
of finer-scale fluctuations.

ion sound velocity, ωCi is the ion gyro frequency and mi is
the mass of argon (≈ 6.63 × 10−26 kg). The two-dimensional
azimuthal cross-section image of the potential fluctuation ϕ̃
at τ = −1ms and τ = 0ms, averaged over a time interval of
0.4ms, are shown in figures 3(b)–(g). Figures 3(b) and (e)
show the zonal flow potential, figures 3(c) and 1(f) show the
waves and the solitary vortex, respectively, and figures 3(d)
and (g) demonstrate the amplitude envelope of the finer-scale
fluctuations. The closed isolines of ϕ̃, highlighted in figure 3(f)
by the dashed ellipse, show the excitation of the solitary vortex
because in figure 3(c) the ϕ̃ at this location is neither closed nor
excited. The large amplitude in figure 3(g) indicates a packet
of finer-scale fluctuations being excited, while a small amp-
litude in figure 3(d) shows that it is not excited. The excitation
location of the packet of finer-scale fluctuations is equal to that

of the solitary vortex, with a ∼5 cm in the azimuthal direction
and a ∼3 cm in the radial direction. The red arrow next to the
fluctuations in figure 3(g) indicates the direction of propaga-
tion for the finer-scale fluctuation, as shown below.

6. Trapping of the packet of finer-scale fluctuations

The packet of finer-scale fluctuations is trapped by the sol-
itary vortex. Figure 4 shows the time variation in the two-
dimensional potential structure of the packet of finer-scale
fluctuations. Figures 4(a)–(f) are time-averaged snapshots for
10µs each and show the time at (a) τ =−330µs, (b) τ =
−250µs, (c) τ =−220µs, (d) τ =−170µs, (e) τ =−130µs,
and (f) τ =−50µs respectively. The filled contour indicates

5
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Figure 4. The instantaneous two-dimensional packet of finer-scale fluctuations at (a) τ =−330µs, (b) τ =−250µs, (c) τ =−220µs, (d)
τ =−170µs, (e) τ =−130µs, and (f) τ =−50µs. The filled contour indicates the potential (ϕ) of the packet of finer-scale fluctuations
and the contour lines indicates the potential of the waves and the solitary vortex. The cross-mark represents the instantaneous potential peak
of the finer-scale fluctuations. The arrows indicate the guides of the propagating fluctuation peak.

the potential of the packet of finer-scale fluctuations. The con-
tour lines indicate the potential of the waves and the solitary
vortex. The cross mark in each figure indicates the location of
the peak of the finer-scale fluctuations at each given moment.
The arrow in the figure illustrates the propagation direction
of the peak. The movement of the cross marks in time shows
that the trajectory of the peaks is particularly radially varying,
indicating that they are trapped in the solitary vortex.

The temporal evolution of the potential peak trajectories of
the finer-scale fluctuation is explained in figure 5. The red-
purple cross-lines in figure 5(a) indicate the radial and azi-
muthal profile axes of the solitary vortex shown in (b) and
(d) on the Cartesian coordinate. The figure 5(b) or (d) shows
the potential profiles of the solitary vortex in the radial or azi-
muthal direction when θ ′ = 0.84 rad (2π)−1 or r= 3.5 cm.
The figures 5(c) or (e) indicates the peak trajectory in the
radial or azimuthal direction of the potential of finer-scale
fluctuations. Blue or red hatched areas each indicate the tra-
jectory of the same peak, indicating two trappings. The peak
meanders from 3 to 4 cm in the radial direction. In the azi-
muthal direction, it propagates in the electron diamagnetic dir-
ection, but pauses ∼5× 10−2 ms around θ ′ = 0.85 rad (2π)−1

when the peak moves radially. The trapping time of the packet

of finer-scale fluctuations in the solitary vortex is 2×10−1–
3×10−1 ms.

7. Comparison with theoretical evaluation

The typical time scale of the finer-scale fluctuations circulat-
ing around the solitary vortex is close to the bounce time pre-
dicted by the trapping theory in a semi-quantitative manner
[14, 15]. Using a theoretical evaluation of the bounce fre-
quency for a wave packet trapped in a vortex to the condi-

tions of this study yieldsωb =
√
2k2θq

2
r ρ

4VGV
−1
∗ (1+ k2θρ

2)−2 ·
V∗ρ

−1 ∼ 2× 104 rad s−1, where kθ is the azimuthal wavenum-
ber of the finer-scale fluctuations, qr is the radial wavenum-
ber of the solitary vortex, VG is the E×B velocity of the
solitary vortex and V∗ is the diamagnetic drift velocity; the
parameters are kθρ∼ 4× 10−1, qrρ∼ 4× 10−1, VGV−1

∗ ∼
1 and V∗ ∼ 1× 103 ms−1. The evaluated trapping time is
2π/ωb ∼ 3×10−1 ms, which is close to the experimental value
(2×10−1–3×10−1 ms). It is noted that the aforementioned
theory is based on one-dimensional analysis; the inhomogen-
eity of the solitary vortex in the azimuthal direction is not taken
into account.
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Figure 5. Peak propagation of finer-scale fluctuations in the cylindrical coordinate system. (a) The radial and azimuthal axes of the solitary
vortex are shown in (b) and (d) on the Cartesian coordinates (red-purple cross-lines). The contour lines show the potential fluctuation of the
waves and the solitary vortex. The filled contour represents the amplitude of the finer-scale fluctuations. (b) The radial profile of the solitary
vortex at a azimuthal condition (θ ′ = 0.84 rad (2π)−1). (c) Peak propagation in the radial direction of the packet of finer-scale fluctuations.
The ranges in which the same peaks propagate are indicated by the red or blue hatching region, respectively. (d) Azimuthal profile of the
solitary vortex at r= 3.5 cm condition. (e) Peak propagation in the azimuthal direction of the finer-scale fluctuations.

8. Summary

In conclusion, turbulence excitation experiments were con-
ducted in a linear magnetized plasma. Frequency filters and
SVD were used to differentiate among zonal flows, drift
wave-type modes, and solitary vortex and packet of finer-
scale fluctuations. A modified template method was used
to reconstruct time-varying two-dimensional cross-sectional
structures. Peak tracking of the packet of finer-scale fluctu-
ations revealed that fluctuations are observed to be trapped
by the solitary vortex, particularly in the radial direction.
The trapping times observed ranging from 0.2 to 0.3ms,
which is consistent with the one-dimensional theoretical
evaluation.
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Figure A1. Correlation coefficient of the reference waveform versus
number of iterations.

Appendix A. Convergence of two-dimensional
reference waveform

The convergence of the reference waveform was validated
using the correlation coefficient as it was iteratively refined.
Figure A1 displays this correlation coefficient shown against
the number of iterations. Specifically, the iteration number
refers to the correlation between successive reference wave-
forms. For instance, the 2nd iteration point on the graph rep-
resents the correlation coefficient between the 1st (figure 2(b))
and 2nd (figure 2(c)) reference waveforms. The correlation
coefficient reached 1 at the 8th iteration or more. This indic-
ates that the reference waveform is in perfect agreement with
the previous reference waveform at the 8th iteration or more.

Appendix B. Two-dimensional reconstruction with
conditional averaging [20]

Figure B1 shows the method used for timing detection and
for determining the conditions during conditional averaging.
Figure B1(a) displays the spatio-temporal Iis with the Galilean
transform applied to the azimuthal probe array data. This cov-
ers a partial azimuthal range of θ ′ =0.78–1.0 rad 2π−1, which
includes the solitary vortex and the packet of finer-scale fluctu-
ations. In figure B1(b), the cross-correlation function between
Iis and the reference waveform (as seen in figure 2(e)) is depic-
ted, with the correlation peaks highlighted by red points. The
reference waveform is centered at τ = 0, a point when the
density of the solitary vortex and the packet of finer-scale
fluctuations reaches its peak within the azimuthal probe array
data, thus the correlation peak is observed at this timing. As

shown in section 3, the waves, which include the drift wave-
type mode and its harmonics, propagate in the electron dia-
magnetic direction. The timing of these correlation peaks and
this propagation (shown in figure B1(c)) can be matched based
on the azimuthal angle. On the other hand, the position of the
radially movable probe is fixed at a specific azimuthal posi-
tion. Therefore, the timing and relative azimuthal location (to
the waves) of the radially movable probe can be determined
similarly. Based on correlation peak timings, values (ϕ and
Ĩis/̄Iis) were obtained from the radially movable probe located
at a particular radial position (as shown in figure B1(d), only
ϕ is described as an example). For example, at the timing of
the correlation peaks in the figure, t0(i), relative azimuthal loc-
ation of radially movable probe, θi, was ascertained. In turn,
ϕ(t0(i),r) was also obtained by the radially movable probe.
Consequently, ϕ is provided under conditions based on r and
θi, relative to the waves.

The method of conditional averaging for two-dimensional
reconstruction is illustrated in figure B2, taking the timings of
t0(i) and t0(i+ 1) in figure B1 as examples. Figures B2(a) and
(b) show the relative two-dimensional positions, θi and θi+1,
of the radially movable probe at the times t0(i)and t0(i+ 1),
respectively, in relation to the azimuthal angles of the waves.
Setting these timings as τ = 0, transformations are applied
such that τ = t− t0(i) and τ = t− t0(i+ 1). This approach
facilitates the determination of ϕ in two-dimensional space at
τ = 0 for the radial position (r) and relative azimuthal angles
θi or θi+1 as depicted in figure B2(c). Given that the waves
propagation angle around τ = 0 while the movable probe
remains stationary, the relationship between the propagating
structures at time τ = ξ can be visualized, as in figure B2(d).
Figure B2(e) demonstrates the azimuthal relationship of τ
dependence between the propagating structure and the mov-
able probe. This relationship stems from the propagation of
the waves during the Galilean transformation applied to the
azimuthal probe array data. The orange lines in figure B2(e)
denote the peaks recognized before and after the timing t0(i)
as shown in figure B2(a), while the purple lines represent the
peaks observed before and after the timing t0(i+ 1) as illus-
trated in figure B2(b). The positions of these orange and purple
lines align with the potential ϕ values derived from the mov-
able probe, as shown in figures B2(f) and (g). Since these val-
ues are tied to specific radii (r), the temporal sequence of ϕ in a
two-dimensional setting was reconstructed by pinpointing the
azimuthal angles corresponding to the various radial positions
(0.5 cm intervals) and correlation peaks. In total, 2596 correl-
ation peaks were identified, which, when conditionally aver-
aged, spanned the entire region, enabling the reconstruction of
the two-dimensional structure.
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Figure B1. (a) A spatio-temporal Iis of a partial azimuthal range, θ ′ =0.78–1.0 rad 2π−1, from the azimuthal probe array. (b)
Cross-correlation function (CCF) between (a) and the reference waveform (figure 2(e)), where the t0(i) and the t0(i+ 1) are the time at the
ith correlation peaks. (c) Corresponding spatio-temporal Iis from the azimuthal probe array before the Galilean transformation. (d) A
potential of movable probe installed at a radial and a azimuthal position measured simultaneously.

Figure B2. (a) and (b) The relative azimuthal positions of the movable probe in two-dimensional space at time points t0(i) and t0(i+ 1),
respectively. (c) The two-dimensional position of the movable probe at τ = 0, relative to the propagating waves depicted in (a) and (b). (d)
Two-dimensional relationships at timing τ = ξ. (e) The τ -dependence of azimuthal positional relationships. The orange and purple lines
represent the positions θi and θi+1, respectively. (f) and (g) The respective τ -dependencies of ϕ as measured by the movable probe.
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