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Kinetic properties of small amplitude waves in an electron plasma are studied using analytic
and numerical calculations based on the Vlasov-Poisson system. The dispersion relation of plasma
waves in a Maxwellian plasma is solved using Laplace-Fourier transform, and it is shown that
waves decay in time by Landau damping. A simulation code for solving the Vlasov-Poisson system
in phase space is developed using the Cubic-Interpolated-Propagation (CIP) scheme, and Landau
damping is successfully calculated numerically. Finally, the stability of an electron plasma with a,

~ beam component is discussed by applying these analytic and numerical approaches.
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1 INTRODUCTION

In a high temperature fusion plasma, typical density and temperature parameters are
respectively given as n ~ 10cm™2 and T' ~ 1keV, which lead to the collision frequency v
much smaller than the plasma frequency wp, ¥ < wy. Therefore, a fusion plasma is deviated
from a local thermodynamic equilibrium, and kinetic properties become distinct. In princi-
ple, its kinetic behaviours may be fully described by the Newton-Maxwell system. However,
such a primitive approach is too heavy to be computed, and we introduce a statistical ap-
proach based on a particle distribution function. A collisionless model without multiple
body correlations or particle collisions is a good approximation of a high temperature fu-
sion plasma. In this work, we use the collisionless Vlasov-Poisson system to study kinetic
properties of an electron plasma with electrostatic perturbations.

One of the most basic kinetic properties of a collisionless plasma is collisionless damping
of a perturbed particle distribution. Even without collisional dissipation, 'free streaming of
particles produces damping by phase mixing. In addition, if one consider self-consistent per-
turbations, resonant interactions between waves and particles lead to the Landau damping.
In this work, we study these phenomena in an one-dimensional (1D) electron plasma, which
is the simplest model for understanding these phenomena, and solve the 1D Vlasov-Poisson
system using analytic and numerical approaches. Although an anédytic method to solve
- the linear Vlasov-Maxwell system was established by Landau [1], a numerical simulation of
the Vlasov-Maxwell system often has difficulties because of the following points. Firstly,
we need to capture small amplitude fluctuations, which are typically less than ~ 1% of
the equilibfium density in a fusion plasma. Secondly, we are interested in so-called normal
modes, which are weakly damped (or growing) waves. The Landau theory tells us that the
damping rate v becomes very small compared to the real frequency w,, where the phase
velocity w,/k, is in the tail of particle distribution. An accurate treatment of such weak
wave-particle interaction is required to get a small damping rate with v/w, < 1%. In this
study, we adopt the Cubic-Interpolated-Propagation (CIP) scheme [2], which is one of the
modern Computational Fluid Dynamics (CFD) schemes, and develop a Vlasov CIP code,
which simulate the 1D Vlasov-Poisson system in phase space. We show linear comparisons
of numerical results with the Landau theory, and then, apply the simulation to a problem of

the inverse Landau damping or an instability in an electron plasma with a beam component.
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The reminder of the paper is organised as follows. In Sec.2, the 1D Vlasov-Poisson
system is solved to obtain the dispersion relation using Fourier-Laplace transform, and the
theory Qf Landau damping is reviewed. In Sec.3 , numerical methods used in the Vlasov
CIP code are presented, and numerical properties such as numerical oscillations and the
recurrence effect are studied. In Sec.4, Landau damping is simulated using the Vlasov CIP
code, and a dispersion relation obtained numerically is compared to analytic results to check
the physical validity of the simulation. In Sec.5, as an application of these analytic and
numerical approaches, the gentle-bump instability is analysed. Finally, a summary is given

in Sec. 6.

2 LANDAU DAMPING
2.1 Linearised Vlasov-Poisson system

We study the propagation of small amplitude plasma waves through an uniform electron
plasma with no equilibrium magnetic field. Let f(7,7, t) be the particle distribution function,
where 7 and ¥ are the position and the velocity of a particle, respectively. We consider the

Vlasov-Poisson system [3] as a starting point.

of . = e T s

—V%p = 4re [no - /fdv ] , (2)
where e and m are the elementary charge and the electron mass, in ”cgs” units, ¢ is the
electrostatic potential, n is the electron density, and ng is the neutralising ion density.

As we consider small amplitude waves, we linearise Eqs. (1) and (2) by separating

the total distribution function f into an equilibrium part fo and a perturbed part ¢ f,

respectively,
f(7,0,8) = fo(0) + 6 f (7, 0,8). ®3)
By assuming the quasi-neutrality condition, ng = [ fo'd;ﬁ, we have a set of linearised equa-
tions,
%+(U-§)5f+—%ﬁw~ﬁvf0=0, ()
_V2p — —dre / sfdv’, (5)
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We then solve the linearised Vlasov-Poisson system for the initial condition 6 f(7,7,0) =

g(7,7), and determine the resulting perturbations.

2.7 Analytic expression of electrostatic potential

As Egs. (4) and (5) are linear and do not depend on the coordinate system explicitly,

a function §f(7,v,t) can be expanded into a Fourier integral with respect to arbitrary co-

ordinates, ‘
50 = e [ 85 e )
olt) = o [ e 7
(@) = oz [ o ar )

Here, we consider a certain wave vector k and take the z axis along k = k,Z. By applying

the Fourier transform, Eqgs. (4) and (5) yield a new equation system in Fourier space,

% + 1kv, fr + zkx%gok gv{: =0, (9)
k2 = —47re/fk v’ (10)
We then apply Laplace transform in time, | |
@ = [ e (1)
o= [ e (12)

When the growth of fi(¥,t) is slower than an exponential dependence e”*, f,(%) is defined
for Re(p) > o > 0. In the inverse Laplace transform, we perform the integration in the

complex p-plane along a straight line parallel to the imaginary axis and passing to the right

of it,
R
@0 = 5o | @, (13)
. 1 100+0 . '
orlt) = 5 [ e (14
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By taking the Laplace transform, Egs. (9) and (10) yield

(-4 ok (@) + ke S, D — g, ), (19

k2p, = —Adme / F(@) dv. - (16)

Eliminating f, in the last two equations gives an expression for ¢,

o
7 xVx '
r — (17)

o, = _Ame
' kz - Amie? . 8fy(7)  dv

k.m 0ty p+ 1kyv,

By performing integration over v, and v,, Eq. (17) can be reduced as

_ 4meN(p)
N(p) = /_ %d"’ (19)
D) =1~ e [T o) v )

kxm J_oo Ou  p+ikyu’

where u = v,, g(u) = [ gx(V)dvydv,, and fo(u) = [ fo(0)dvydu,.

2.3 Time asymptotic solution of plasma waves

To determine o(t) in the asymptotic limit or ¢ — co, we take the inverse Laplace trans-
form of ¢,. This complex integral can be easily performed if we displace the integral path
to Re(p) < o. For this purpose, we need ¢, for p € C. Although ¢, is defined only for
’ Re(p) > o, we can extend the definition of ¢, in the whole complex p-plane by the analytic
continuation [4].

If one suppose that g(u) is analytic on the whole complex u plane, the only singularity
of N(p) is u = 4p/k,. According to the Cauchy’s theorem, the following relation holds for

the cases represented in Fig.1,

9w 2 ()
740 P+ kaudu N kmg (kﬁ) (21)

. In the limit of R — oo, the integration along the big semi-circle will vanish. Consequently,
the redefined N(p) using modified integral paths P in Fig.2, N(p) = [, g(uw)/(p + 1kyu)du,

is the analytic continuation of the original N(p), and this function has no singularity at
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finite values of p. The same discussion is applicable also to D(p), provided that dfy(u)/du
is an entire function on the Whole complex-u plane. Therefore, the only singularities of ¢,
are the zeros of D(p).

In the inverse Laplace integration formula (14), the integration is performed over the
Bromwitch path B, represented in Fig.3. However, the Cauchy’s theorem tells us that the
integration élong the closed path By, + By + Bs +'B4 is zero. Moreover, if we take the limit
of h — oo, the integration along B, and B, will vanish, which gives / B, = | By Therefore,
we can displace thé integration path from B, to D, with going around all the poles of ¢,.
Let px be the pole of D(p), which is the nearest to the imaginary axis. In the inverse Laplace
transform, ¢ (t) = |, D, @pePdt/(2m), only the residue related to py is of importance for large
values of ¢, because of the presence of the factor e*. Thus, the electrostatic potential ¢(t)
is proportional to ePkt. If we write pr = —w = —ww, — 7y, e~ shows a wave with the
damping rate y and the real frequency w,. Here, py, is determined by the dispersion relation,

_Ame® [ Ofo(u) du

= 22
k.m Jp Ou p+ikgu (22)

D(p) =1

2.4 Limiting case of long waves

In the small &, limit, a resonance point given by u = 1p/k, goes to large |u|, where the
particle distribution becomes very small. This leads to weak wave-particle interaction, and
therefore, we may assume a small damping rate, v < w,. By applying this assumption, we

expand D(w) around w ~ w;,

D) ~ D) ~ 15 Dler) | (23)
We then solve D(w) = 0 to obtain w, and ~, |
Re(D(wy)) =0, (24)
Y D =
where D(w,) is given as
D(w,)=1- k‘é’iop / ua_f% 3/7;: du — k‘gio %ﬁ o (26)
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In Eq. (26), the second term shows the Cauchy’s principal value, and the third term gives

an imaginary part. For a Maxwellian plasma,
folw) =noy[ompe ‘ (27)

2

Eq. (24) yields

v

: 1 ve~
iRe(Dv(wr)) = 1+\/7—T—k§)\gfp/md’v

1 .
- Z'(§)
SKINE,

=0, (28)

=1

where ¢ = w,/(V2ksva), v = u/(v/2vs,), v is the electron thermal velocity, & is the
Boltzmann constant, Ap = 1/kT/(4mne?) is the Debye length, and

1 oo v
Z(¢) = VA _gdv. (29)

For the long wavelength limit considered here, Eq. (29) can be approximated by asymptotic

expansion for €] > 1 [3],

Z(f)”“g—2—§3—4—€3—"’-‘ (30)
Finally, we have the dispersion relation,
2 4
“wo 2y2 Wo _
1— w_f — i%lcgc/\pa—)—;1 =0, (31)

where the plasma frequency is defined as w2 = 4wnge? /m. The dispersion relation (31) gives

the k,-dependence of w, as

: 1 /

3 ,
~ 4w (1 + 5)@@) . (32)

The group velocity, Ow,/0k, = (3/2) \%wok, is not constant but proportional to k. Con-
sequently, any initial perturbation consisting of multiple k, components will be distorfed as
it propagates. , |

By substituting w, to Eq. (25), vy is obtained as
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In Eq. (33), we see that the damping rate -y is given by 0fy/0u at the velocity u = w,/k,.

A final expression of v for a Maxwellian plasma is given as

4

T oW w?
RPN e 34
V() SQﬁwfm{zg%%] (34)

3 NUMERICAL METHODS
3.1 Normalised equation system

From here, we discuss the 1D Vlasov-Poisson system with the particle distribution

f(z,v,,t), which is obtained by integrating Eqs. (1) and (2) over v, and v,.
Ouf + 0200 + —0ypBuf =0, : (35)
—8%p = 4re [ng — /fdvx] , (36)

In a typical fusion plasma with ng ~ 10*cm=3 and T' ~ 1keV, characteristic spatio-temporal
scales are given by wy! ~ 107!!s and Ap ~ 10~%cm. To avoid treatments of too big and too
small numbers in a numerical simulation, it is useful to normalise an equation system by
the above characteristic scales. In addition, results from such a normalised equation system
are applicable to a plasma with arbitrary plasma parameters, provided that assumptions
used are valid fqr those parameters. In the normalisation, we choose the units of time,
length, charge, mass, and density as wy L Ap, e, m, and ny, respecti;\/ely. If we denote
the original quantities with an hat (, %, f ...), and the normalised dimensionless quantities
without hat (¢, z, f...), they are related as t = wot, * = A\;'%, v, = (Apwo) 0y, 7 = ng ',
f = (Apwo/no)f, and ¢ = (e/kT)@. By substituting these relations to Eqs. (35) and (36),

we have the normalised Vlasov-Poisson system,
—@@:1—/f@w , (38)
3.2 Basic principle of CIP scheme

Let us consider the following simple 1D hyperbolic equation,

Buf + vO,f = 0. (39)
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When v is constant, the analytic solution is given by

flz,t+ At) = f(z — vAt, ). (40)
Even if v is not constant, an approximate solution may be given by

flz,t + At) = f(z — vAt, 1), (41)

provided that At is small enough. Based on this idea, we integrate the time evolution of
the propagation equation by shifting f. In this procedure, we need to compute interpolated
values of f between discrete grids. The CIP method uses a Hermite interpolation defined by
fi and (0f); at two neighbouring grid points. We write an approximate profile F; between

x = x; and Z = ®;,, by a cubic polynomial function,
Fi(z =z; + X) = ALLX? + A2, X? + A3, X + A4, (42)

where dup = i + sgn(—wv;At). By imposing boundary conditions,

Fi(z:) = fi, (43)
Fi(Ziwp) = fiup, (44)
OuFi(z:) = Oufi, (45)

OuFi(@iup) = Osfiup, (46)

the coefficients Al;, A2;, A3;, and A4; are determined as

AL = (Do + 0o fiup) /8 + 2(fi = fiup) /6%, (47)
A2 = —(20uf; + Osfiup) /8 — 3(fi — fiup) /8, (48)
A3, = 0.f, (49)
A4 = i, (50)

where 0 = 7, — ;. In order to have boundary conditions (43)-(46), we propagate not only
the value of f but also its gradient [2]. When v is independent of z, a propagation equation
for 8, f is obtained by differentiating Eq. (39),

8(.1) ,  0@1) _

o e 0. (51)
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If we write £ = —v;At, the iteration process is given by

fz’nﬂ = F'(z; + &)
= A17E® + A2PE* + A3PE + A4T, (52)

where n indicates an index of iterations.

3.3 Basic principle of Lagrange interpolation scheme

Another simple way to interpolate f by a cubic polynomial function (42) is to use a
Lagrange interpolation. When sgn(—wv;At) = +1, the boundary conditions at four successive

grid points,

Fi(@is1) = fie1, (53)

Fi(z:) = [ (54)
Fy(iv1) = firn, (55)
Fi(@it2) = fiso: , (56)

give the coefficients,

Al = (=fic1 +3fi = 3fira + fis2)/66°, (57)
A2 = (fio1 —2fi+ fir)/26, (58)
A3, = —(2fic1 + 3fi — 6fiy1 + fir2)/66, (59)
Al = f. (60)

The Lagrange interpolation scheme is advantageous because we do not need to compute

0, f. Its accuracy will be discussed in the next section. .

3.4 Comparison of CIP and Lagrange interpolation schemes

In order to see numerical properties of interpolation schemes, we solve the 1D hyperbolic
equation (39). In this test, we use N grid points to represent the x space with computational
domain 0 < z < L, and impose a periodic boundary condition f(0) = f(L). The time step
width is chosen as At = (§/v)/8 with the propagation speed v = 1.
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Firstly, we solve the propagation of a sinusoidal wave given by the initial condition,
f(z) = sin(2rz/L). In this test, numerical solutions obtained from both the CIP and
Lagrange interpolation schemes are very close to analytic solution. We compare these
numerical solutions with those obtained from the cubic spline interpolation method [5]
[5] and from the linear interpolation scheme. Table I shows the relative integral érror,
Zf\i (fi = frnatviey femalytic - ohserved after 100 iterations, where femalvtic is the analytic
solution. We see that the CIP scheme gives the best results for this kind of smooth curve.

We then simulate the propagation of a square wave. Figure 4 shows comparisons of nu-
merical solutions after 100 iterations with the CIP, Lagrange interpolation, cubic spline in-
terpolation, and linear interpolation schemes. In the results, the linear interpolation scheme
shows very strong numerical diffusion compared to the other higher order schemes. Quanti-
tative comparisons of the relative integral error are given in Table II. Again, the CIP scheme
gives the best results. However, we must make a few warnings. Although the distribution
function is positive in the initial condition, as shown in Fig.4, negative values appear after
a few time steps, producing unphysical numerical oscillations. This also violates the mono-
tonicity of the spatial derivative. Therefore, the scheme may not be valid for a profile with

steep gradients or fine structures, and the grid size should be chosen small enough to resolve

the finest scale in the system.

35 2D Vlasov CIP code

In extending the CIP code to 2D phase space (z-v,), we use the method of fractional
step [6]. Let us write Eq. (37) in phase space as a 2D hyperbolic equation in Cartesian

coordinates (z,v),

O,f + v, f +v,0,f =0, (61)

where v,(z,y) = y and v,(z,y) = e¢/m0,¢p. In the fractional step technique, the integration

of Eq. (61) is split into

Stepl :  fi; = L(z, At/2) fi}, (62)
Step3 : i’;“ = L(z, At/2) f7, (64)
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where 14, j are indices in the z- and y-directions, n,n + 1, %, ** show solutions at the n-th,
n + 1-th, and intermediate steps, respectively, and L(\, At) gives the solution of equation
Oif +va0xf = 0 after the time interval At. Since v, (v) is independent of z (y)inEq.(61),
each successive integration processes are written in conservative forms, 9, f 4+ 0 vaf = 0, and
therefore, even after splitting approximation, conservation properties can be kept provided
‘that a proper numerical scheme is chosen.

In applying the CIP scheme to Eq. (62) or

we also need to advance 9, f in addition to f and 0,f. By taking partial derivative in the

y-direction, Eq. (65) yield an evolution equation for 9, f,

80, f) + 8,(va0.F) = 0. (66)
In integrating Eq. (66), we use a simple centered finite difference approach,
6@/ ;} - 8y Zgl _ _“x,j+13xf:j+1 - Ux,j~lawfifj—1 + 'Ux,j+18$fz??j+1 ——_U%j—laﬂﬂfirfj—l (67)
' At 4Ay ’

where 9, f;; is calculated by an advection equation for 0. f. By replacing z and y, the same
procedure is applicable also to Eq. (64). It is noted that this numerical procedure exactly
conserves the total particle number [2].

In a Vlasov CIP code, we considér x-v, phase space with computatibnal domain
{(z,v,)|0 < z < L, |vg| < vop¢}. The grid numbers in the x- and v,-directions are given by
ng = L/Az and 2n,, = 2v,;/Av,, respectively, where Az and Av, are grid spacing. The
boundary conditions are periodic in the z-direction and fixed or f(x,v,rr) = 0 in the v,-
direction. Before Step2, the electrostatic potential is calculated from the Poisson equation

(38) using Fast Fourier Transform (FFT) technique [5].

3.8 Recurrence effect in free-streaming problem

Before showing simulations in the Vlasov-Poisson system, we solve a simple free-streaming
problem without electric fields. This test is useful to understand a concept of phase mixing
and how a recurrence effect occurs in solving the Vlasov equation based on a mesh approach.

Let us compute the following free-streaming equation,
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which has an analytic solution given by f(z,vs,t) = f(x — vt,v,,0). The initial condition
is f(x,vs,0) = 1/+/2m exp(—v2/2) Acos(k,z) and the parameters are A = 0.01, k, = 0.5,
L =4m, v, = 5, ny = 32, 2n,, = 32, and At = 1/8. It should be noted that although a dis-
tribution function with negative values has no physical meaning, we simulate this condition
as a standard test case often discussed in earlier works [2, 6].

In a continuous system, the time history of the zeroth order moment p is estimated as

+00
p(d),t) = f(xﬂ)xyt)d@z,

—0o0

A e
= e V2% cos[kz(z — vyt)|dvy,

—0o V2T
= Ae %872 cos(ke), (69)

where the following relation is used,

+oo tookikat
/ exp|— (v, :I:zkxt)2/2]_dfux - / o2

—00 —ootrkyt

400
= / e 12ds
—00

= Vor. (70)

This solution shows that the density profile given at the initial time continuously decay in
time, even though f is not damped. This decaying process comes from a property that fine
structures produced by phase mixing are smeared out by integration over v,

On the other hand, in.a discrete system, the time evolution of j is obtained as

m,%—l
plz,t) = Y flx,jAvs,t)Av,
jz_nvm
Ty —1 A
= Z e UAU)/2 coglky (& — ALY Av,. (71)

Ver

J=—Nug

Here, we see that p is restored to its initial value after the recurrence time Tx = 27/ (k. Av,),

because Eq. (71) satisfies p(x, pTgr) = p(z,0) for p € N. It is noted that in this work, we

define the discrete velocity as 0, = (7 + 1/2)Av. Because of this definition, the recurrence
effect appear as p(z,0) = —p(z, Tg) = p(x,2Tg) in our system.

In the present case, the recurrence time is estimated as T ~ 40.25 (it = 322 iterations).

This is clearly seen in Figs.5 and 6. In Fig.5, the numerical solution at ¢t = 150 shows

fine structures produced by phase mixing, and then, at it = 322, the numerical solution
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is restored to f(z,vy, Tr) = —f(%,v;,0). Figure 6 shows the time ev olution of |p|. The
numerical solution agree well with the analytic solution (70) up to¢ ~ 9. Then, the solution is
deviated from its analytic solution, and the initial amplitude is reproduced at the recurrence
time t = Tx. In order to see what is happening in phase space, we discuss the analytic

solution in velocity wave number space k,. We take k, Fourier transform of the analytic

solution,
fr, (z,1) = L Le‘”i/QACOS[km(:I:— vst)]e ™V dv
v 2 J_ o 27
_ ﬁ(elkzxe_%(k”kmt)? _ e—zkxa:e—%(kv—kmt)?). (72)

Figure 7 shows the time evolution of Eq. (72) at z = 0. In the plot, two wave packets
propagate in opposite k, directions, respectively, and at ¢ ~ 20, they reach at the cut-off
velocity wave number, which is defined as k,ff = £27n,,/(2v,r7) ~ £10. Components
beyond k, .¢; are reflected by aliasing [5], and the wave packets bounce back to reproduce
the initial condition at ¢ = Tg ~ 40. Since the recurrence effect comes from spurious
k, components produced by aliasing, it is completely unphysical. To avoid the recurrence
effect, we must either stop the simulation before the recurrenée effect occur, or increase the

resolution in velocity space to extend the recurrence time.

4 NUMERICAL RESULTS
4.1 Conservations of particle number and energy

In order to examine the validity of the simulation, we check first principles such as the
particle number conservation and the energy conservation. The Vlasov equation (37) can

be written using the Hamiltonian A of a single particle motion,

B,f + Ouhdyf — Ohdyf = 0, (73)
h= i~ L m
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The conservation of the particle number N(¢) is obtained by integrating Eq. (73) over z

and v,
N Ly oo
dN _ / / (—Byhsf + 0shdy f] ddus
Ly
_ / / B, (Buhf) + Oy(Buh )] dwdu,

- _ / [Buhf]2=Ee du, + / - [Ouhf]= da
—00 0
= 0, ‘ (75)

where the boundary conditions, f(0,v,,t) = f(Lg,vs,t) and f(z,—00,t) = f(z,00,t) = 0,
are used. (
In a similar way, the energy conservation is derived by multiplying h to Eq. (73) and

integrating it over « and v,,
L, 00 L, o0
/ / ho, fdzdv, = / / [—hOL(Oyh f) + hoy(O:hf)] dzdu,
0 —0o0 0 —0o0
Ly o0
= / / (=05 (hOyhf) + Oy(hOzhf)] dzdu,
0 —o0

oo Ly
= = [ o vk [ hobf e
0

—00

= 0. (76)

By substituting Eq. (74), Eq. (76) yields the total energy Eic, the kinetic energy Eiin, and
the field energy Epq,

dEtot o dEIcm + dEfld _

a  dt =0, (77)
Lz

Eyin = / / (—v2 f) dzdv,, (78)

Epng = 5/0 |0z 0| daz. (79)

Figures 8 and 9 show the particle number conservation and the energy conservation
observed in typical simulations of the Landau damping. In Fig.8, the breakdown of the
particle number conservation is very small but finite. As discussed earlier, the present
numerical scheme exactly conserves N. Therefore, a cause of the error of N comes from the
boundary in the v,-direction, where f is not zero. This can be seen by comparing simulations

with different v,ps. In Fig.8. the relative error of N is significantly reduced by extending
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computational domain from 'Uoff = 4 to v,¢r = 5. Figure 9 shows variations of the kinetic
energy, the field energy, and the total energy. We observe that variations of the kinetic
energy and the field energy are balanced with each other to ensure the energy conservation.
In the present case, the error of the total energy is less than ~ 10% of the field energy and
is ~ 107 of the total energy. |

4.2 Simulation of Landau damping

Let us compute the Landau damping by solving Eqs. (37) and (38) with the initial
condition, f(z,v,,0) = 1/v/2mexp(—v2/2)[1 + Acos(k,)]. The simulation parameters are
A =001, ky = 0.5, L = 47, vpp5 = 4, ny = 32, 2n,, = 32, and At = 1/8. Here, a small
amplitude of initial perturbations A provides a linear character of the problem.

Figure 10 shows the time history of the amplitude of the basic Fourier component (k, =
0.5) of the electric field, | E%| = |kzx|, and its comparison to the analytic solution. Ej decays
exponentially in time as predicted by the theory of Landau damping, and the recurrence
effect studied in the previous section occurs around the recurrence time Tr ~ 48.7. To
evaluate w, and 7, we apply spectral analysis technique to the simulation data. Firstly, we
extract the peaks by searching the data points which satisfy dEj/dt = 0, and determine +y
by applying the chi-square fitting [5] to these data points. We then remove the decrement
component by multiplying Ej, with e apply a Welch window [5] to the data in order to
reduce spurious leakage of the spectrum produced from finite time-series data with a square
window, and perform FFT. Finally, we search for the peaks of the power spectrum to obtain
wy. For the simulation in Fig.8, we get v = 0.1535 and w, = 1.4223, which are very close to
the theoretical values [2], v = 0.1533 and w4, = 1.4156. |

4.1 Comparison of numerical results with theory

- We then compute the dispersion relation or the k,-dependence of v and w, from a system-
atic k, scan. To perform this scan, we have to be careful about the simulation parameters,
and they are chosen so that k,Az < 1, T = 2n/(k;Av,) = const., and w,At < 1 or
kyvorpAt < 1 are satisfied. Practically, we choose the standard simulation parameters as

K2 = 0.5, A2 = 7/8, A = 7.87 x 1072, and At® = 1/8, and then, determine parameters for
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each kg as A, = cA% A, = cAY and At = cAt® (At = At for k, < kD), where ¢ = k) /k,.
The other simulation parameters in the standard case are given as L = 4, v,py = 5, np = 32,
and n,, = 128. Comparisons of y(k,) and w,(k;) obtained from simulations and Eqs. (32)
and (34) are shown in Fig.11. We see that numerical results agree very well with analytic
estimation especially in a smaH k. region, where the assumptions, £ > 1 and vy < w,, used

in deriving Eqs. (32) and (34) are valid.

5 GENTLE-BUMP INSTABILITY

As an application of the analytic and numerical methods studied above, we study the
stability of electrostatic waves in an electron plasma with a small bump in the tail of a
Maxwellian distribution (see Fig.12). In this study, we consider the following equilibrium

distribution function,

m . mu? m _mu—ug)?®
— 2xT 26T 80
Jo(w) = nasy ST e M +npg orrTs € B, ; (80)

where the density of bulk and beam components, ny and ng, satisfy ny +np = ng and

ng < Ny, the temperature of bulk and beam components, Ty, and T, are assumed to be

the same, Ty; = Tg, and the beam drift velocity @0 is given as ugp > vg,.

5.1 Dispersion relation of gentle-bump instability -

If we use the same assumptions as in Sec.2, the dispersion relation (24) is given as

_,1)2 82
Ny ve Se
) = _ dv
Re(D(wr)) = 1+ ﬁk’g)\%P/ + \/_kQ)\Q ’P/ de (81)
o _ M / 7

where v = u/(v2v4), s = (u — uo)/(\/ivth), ¢ = w/(V2kyvy), and x = (wr/ks

u0)/(v/2vs,). In evaluating Z’, we consider two limiting cases with different wave phase
- velocities vp, = wy /ky. Firstly, when vyn, > ug > v, we can use the asymptotic forms
of Z(¢) and Z(x) under & > 1 and )x > 1, respectively, and we have the same dispersion
relations as the plasma oscillation given by Eq. (31). We denote two solutions shown in Eqg.

32) by wy and w_. On the other hand, when vy, ~ 1y > vy, We approximate Z(x) in the
, P X



JAEA-Research 2006—089

limit of x ~ 0 by the following expansion[3],

4
Z(x)~—2x+§x3+~-. (83)

By substituting Eqgs. (30) and (83) to Eq. (82), we have the following dispersion relation,

w? 1

1-— (1 — CLB) + AB5 5o k2)\2 = O, (84)

where ap = njg /no. We denote a solution of Eq. (84) as wr,

i 1— ap
wi = “’0\/ T T an/(k200)" (85)

Figure 13 shows the three branches, w1, wy, and w_, and their domain of validity. We see

that in a small k, region, the three branches coexist.
We then estimate damping (growth) rates for these three branches. By substituting Eq.
(80) to Eq. (33), we have an analytic expression of the damping rate,

T W Wy ( ) ( Wy u0> _;( wr _ﬂ)z}
wr) ~ 55 [(1—a e 2\kvn) 1g ——]e 2\kevn v/ | (86
v(wr) \/gkgvfh [( : B)kxvth B (86)

kv, v

Eq. (86) shows that v is determined by a balance between the first and second terms
which come from bulk and beam components. While the first term is always stabilising, the
second term changes its sign depending on v, and ug, and it becomes a destabilising effect
for 0 < vpp < up. By substituting Eqgs. (32) and (85) to Eq. (86), we have three damping
| rates, y(w1), y(w;), and y(w_). Since the w_ branch is always stable, we discuss stability
regimes of the wy and w, branches. Figure 14 shows the marginal stability curves given by

~¥(w1) = 0 and y(w,;) = 0 on the k,-ap plane and on the k,-uy plane. From these parametric

scans, we choose the simulation parameters of the gentle-bump instability as ug = 4vy, and -

ap = 0.05. In Fig.13, the damping rates of the w; and w, branches are plotted for these
parameters. Although we see unstable k, regions for both the w; and w, branches, the

unstable k, region of the latter branch is out of its validity limit.

3.2 Simulation of gentle-bump instability

In this section, we compare the above dispersion relation with numerical results obtained
from the Vlasov CIP code. In the k, scan of w, and + of the gentle-bump instability, we use

the same parameter set as used in Sec.4.
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Figure 15 shows the k,-dependence of the real frequency w,(k;). For k, < 0.2, two stable
branches corresponding to w; and w, coexist. For 0.2 < k, < 0.4, we observe one unstable
branch which has the real frequency in between the wlv and w, branches. For k, > 0.4, we
find one stable branch near w.. Although the damping rate obtained from the simulation
show a similar curve as that of the w;, branch in Fig.13, its unstable region is shifted to
higher k,. It is noted that the lowest order estimations of w, and w; in Egs. (32) and (85)
are not valid in this k, region, because neither w, /k, > ug nor w,/k, ~ ug are satisfied for
w, and wy, respectively. Therefore, a direct computation of the dispersion relation (22) with
the equilibrium distribution (80) is needed to have theoretical predictions for k; > 0.2. In
this work, we take a quasi-analytic approach where Eq. (86) is estimated using w, obtained
from the simulation. Comparisons between the quasi-analytic estimations and the numerical
results are shown in Fig.15. We see that the unstable k, region is recovered by the quasi-
analytic results. From this quasi-analytic estimation, we can also understand a transition
from a single branch to two branches in a low k, region. In the frequency spectrum of E,
we observe only a single peak of the most unstable mode for &, > 0.2, but around &, ~ 0.18,
we find two peaks corresponding to wy and wy. As k, decreases, a peak at w, becomes
dominant compared to that at w;. These features are consistent with a change of the most

unstable or less stable mode from wy to w, at k, ~ 0.18.

6 SUMMARY

In this work, we studied kinetic properties of small amplitude waves in an electron plasma
described by the Vlasov-Poisson system using analytic and numerical approaches.

Firstly, starting from the 1D Vlasov-Poisson system, we solved the dispersion relation of
plasma waves using Fourier-Laplace transform, and reviewed the theory of Landau damping.
From this analysis, webhad analytic estimations of the real frequency w, and the damping

rate v of plasma waves.

We then developed a Vlasov CIP code to solve the 1D Vlasov-Poisson system numerically.

In this development, we examined numerical properties and accuracy of several numerical
schemes by solving the propagation of sinusoidal and square waves, and adopted the CIP
scheme. We confirmed the recurrence effect by solving a free-streaming problem, and dis-

cussed its mechanism by showing behaviours of the solution in the velocity ‘wave number
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space. In these numerical tests, we also discussed the validity limit of the simulation.

In order to test the physical validity of the Vlasov CIP code, we simulated Landau
damping. In this simulation, firstly, we confirmed first principles such as the particle number
conservation and the total energy conservation, and then, compared the numerical results
with the analytic solution. The results showed that small amplitude (0n/ny < 1%) and
weakly damping (y/w, < 1) plasma waves were successfully simulated, and the dispersion
relation was recovered with good accuracy. This proves the usefulness of the Vlasov CIP
code in studying small-amplitude waves in a collisionless plasma.

Finally, we applied the above analytic and numerical approaches to the gentle-bump
insfability. The dispersion relation of plasma waves in an electron plasma with a beam
component gives two branches in different regimes of the phase velocity w,/k,. The analytic
result predicts that in a low k, region, two branches coexist, and that the transition of
the most unstable or less stable mode from one branch to the other branch occurs with
decreasing k. These complicated features of the gentle-bump instability was successfully
\ captured by the Vlasov CIP code. |

Although the present study focused on linear problems, in principle, the Vlasov CIP
code can simulate their nonlinear evolutions. In future works, nonlinear problems will be

addressed.
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with grid numbers, N = 100 and N = 200.

TABLE 1: The relative integral error after 100 iterations in propagation tests of a sinusoidal wave

N\ Scheme CIP Lagrange |Spline |Linear
200 2.33-107* %|1.53-1073 %[0.33 %| 8.5 %
100 36-1073 % | 24-1072 % | 1.4 % | 30 %

TABLE 2 : The relative integral error after 100 iterations in propagation tests of a square wave

with grid numbers, N = 100 and N = 200.

N N\ Scheme|| CIP |Lagrange| Spline |Linear
200 56 % 91% |75 % |47 %
100 9.4 %| 154 % 151 %| 68 %

FIG. 1: Integration paths C' with Re(p) > 0 (left) and Re(p) < 0 (right).
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FIG. 2: Integration paths P used in the analytic continuation from PRe(p) > 0 (left) to Re(p) <0

(right).
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FIG. 3: The left figure shows Bromwitch path B, and deformed path D,. By considering auxiliary

paths, equivalence between By, and D, can be seen (right).
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FIG. 4: The propagation of a square wave. Plots show comparisons of numerical solutions after

100 iterations.
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FIG. 5: The time evolutions of phase space structures of the distribution function in the free-

streaming test.
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FIG. 6: A comparison between analytic and numerical solutions of p in the free streaming test.

The initial amplitude of |p| is recovered at the recurrence time T ~ 40.
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FIG. 7: The recurrence effect in velocity wave number space. The time evolutions of the analytic

solution (72) is plotted at z = 0.
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FIG. 8 The particle number conservation observed in a typical simulation of Landau damping
with vesy = 4 (left) and v,y = 5 (right). The error of the particle number is significantly reduced

by extending computational domain in the velocity space.
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FIG. 9: The total energy conservation observed in the same simulation as Fig.8. In this simulation,
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conservation.
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FIG. 10: The time history of the basic Fourier component of the electric field Ej, observed in a
typical simulation of Landau damping. The real frequency and the damping rate in the simulation
result (red) agree well with a theoretical prediction (green). In the numerical result, the recurrence

effect occurs at T ~ 48.
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FIG. 11: Comparisons of numerical (red) and analytic (green) estimations of the damping rate -y

(left) and the real frequency w, (right).
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FIG. 12: The electron distribution function of a Maxwellian plasma with a beam component. Here,

the beam drift velocity is ug = 4vg.
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FIG. 13: The left figure shows real frequencies of wy, w4, and w_ branches. The right figure is
plots of damping rates of wy and wy branches. Parameters used are ug = 4vy, and ap = 0.05.
In the plot, negative values mean an instability. Hatched regions denote domain of validity for

assumptions x > 1 (green) and x ~ 0 (red) used in calculating w; and wy.
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