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1.  Introduction

The ideal plasma for fusion reactions in the core of ITER and 
future reactors is a mixture of deuterium and tritium. However, 
core Tokamak plasmas are often contaminated by other ion 
species, called impurities. Except for helium (fusion prod-
ucts), impurities originate from the edge. Nitrogen, neon and/
or argon particles are injected to mitigate hot spots on walls. 
The plasma can erode plasma-facing components, such as the 
walls of the confinement chamber and the divertor, which can 
be made of beryllium, carbon, or tungsten. For typical plasma 
parameters, these impurities are transported from the edge 
to the core by both collisional (neoclassical) and turbulent 

processes. Accumulation of impurities in the core threatens 
the viability of fusion. One issue is the dilution of fuel, which 
degrades the efficiency of fusion reactors. Another urgent 
issue is that heavy impurities, which are not fully ionized, 
radiate away the energy generated by fusion.

The efficiency of fusion is very sensitive to core impurity 
concentration. For example, a reduction by a factor 4 of tung-
sten concentration in the core, from 12 × 10−5 to 3 × 10−5 
would lead to a 40% decrease in the minimum value of triple 
product required for ignition, and a 40% decrease in the 
required temperature [1]. Since slight contamination in the 
core can yield prohibitive energy losses, it is crucial to improve 
our lacking understanding of heavy impurity transport.
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Abstract
In gyrokinetic simulations of turbulent impurity transport, trace impurity species are often 
treated as passive species, in the sense that they are not included in Maxwell equations. 
This is consistent with the assumption that impurities with low enough concentrations 
are impacted by turbulence generated by electrons and main ions, but do not impact it 
significantly in return. In this work, we relax this assumption, and investigate the active 
impacts of impurity on impurity transport as a function of its concentration, in the presence of 
trapped-particle-driven turbulence. We focus on W40+ tungsten, which is relevant for modern 
tokamaks, and adopt a reduced gyrokinetic bounce-averaged model for trapped particles in a 
simplified tokamak geometry. The impacts depend on the relationship between equilibrium 
density gradient and temperature gradient. When these gradients are equal, we observe that 
tungsten can be treated as a passive species for concentrations below 2 × 10−4. Above this 
concentration, the impurity significantly impacts both density and heat transport, essentially 
quenching them for concentrations above 10−3. This quenching occurs as electric potential 
fluctuations become in phase with impurity density fluctuations.
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In particular, ITER will feature a tungsten divertor. This 
choice of material was ratified relatively recently (2013–14), 
based on its behavior under extreme heat fluxes. In response, 
global efforts are focusing on the prediction of core tungsten 
density. Tokamak experiments such as JET and ASDEX-
Upgrade indicate significant tungsten accumulation in the 
core [2, 3]. Promising remedies have been discovered empiri-
cally (See [4] for a partial review). For example, the peaking 
of tungsten density profile can be reduced by increasing 
central radio-frequency heating power in ASDEX Upgrade 
[5]. Control of Edge-Localized Modes is another important 
mitigation scheme [6–8]. Impurity transport from edge to 
core appears to depend on key plasma parameters such as the 
collisionality (a normalized collision frequency), the rate of 
toroidal rotation of the plasma, the concentration of impuri-
ties, and the mass and charge of each impurity species. First-
principle numerical simulations are often used to explore this 
vast domain.

Quantitatively-accurate transport modeling of core 
tokamak plasmas requires a 5D gyrokinetic description [9]. 
Developments of gyrokinetic simulation codes have been the 
focus of many research teams worldwide [10]. The approach 
is now mature enough to provide critical understandings and 
predictions of experiments [11–13].

For electrons and deuterium ions, drift-wave turbulence is 
the dominant source of cross-field transport of particles and 
energy in tokamaks, dwarfing neoclassical collisional trans-
port. However, the transport of high-Z impurities poses a 
specific challenge. The neoclassical and the turbulent contrib
utions can be comparable. Most codes treat each channel 
separately, with a neoclassical code for collisions, and a gyro-
kinetic code for turbulence. A recent, growing body of evi-
dence shows that collisional and turbulent channels couple 
synergistically [14]. When including both processes self-
consistently, impurity transport is found to be significantly 
different from a simple sum of the two contributions (discrep-
ancies can reach and overcome 100%, yielding either over-
prediction or under-prediction depending on the region of the 
plasma). More recently, impurity transport was investigated 
by global gyrokinetic simulations with an accurate collision 
operator, which fully recovers neoclassical theory [15]. Due 
to the new collision operator, and to the difference of scales 
between deuterium and tungsten, the cost of one simulation 
is of the order of 2 to 3 million core.hours on modern super-
computers [16].

The concentration of impurities in tokamaks is often small 
enough that the impurity contribution in the quasineutrality 
equation  is often considered negligible. Indeed, the relative 
contribution of impurity density in quasineutrality is of the 
order of CZ2, where C is the impurity concentration, and Z 
its charge number. This is the most used simplification in 
the published literature of turbulent transport. In the ‘trace’ 
limit, CZ2 � 1, the impurity behaves as a passive species, or 
test-particle, which means that its presence does not affect 
the turbulent state. Several numerical simulations have been 
performed with passive impurity, showing for instance that 
the background turbulence can transport the impurity by 
diffusion and particle pinch velocities [17]. In this case the 

diffusion coefficient and the pinch velocity do not depend on 
the density gradient of the trace, but depend on the param
eters of the background plasma. Therefore a diffusion coef-
ficient and a pinch velocity can be determined unambiguously 
because of the linear relationship between flux and gradient. 
The passive treatment of impurities was also used for instance 
to investigate impurity advection in tokamak edge plasmas 
based on the two-dimensional Hasegawa–Wakatani model 
[18]. As another example, using the gyrokinetic GENE code 
in the case of nonlinear simulations of TEM turbulence [19] 
driven by steep density gradients and with passive impurities, 
it has been shown that the impurity peaking factor is weakly 
dependent on impurity charge. This code has also been used 
to calculate impurity transport coefficients due to ITG and 
TEM turbulence in JET, again considering passive impurities 
as the impurity fraction is very low (10−6) [20]. In this article 
the results are found to be in qualitative agreement with the 
experimental findings for the impurities Ne, Ar and Ni. For 
carbon, however, a discrepency between numerical results and 
experiment are observed, and these results may indicate that 
some important ingredient is missing in the models. Finally, 
using the GKW code in the trace limit [21], turbulent convec-
tion of heavy impurities in tokamak plasmas has been investi-
gated, motivated by the expected increasing importance of the 
turbulent transport of heavy impurities for the ITER baseline 
scenario and a reference reactor (DEMO) plasma. The same 
code in the trace limit is used to study W impurity transport 
in JET and ASDEX upgrade [3]. Therefore, the passive treat-
ment of impurities in the trace limit is widely adopted.

However, impurities can have a non-negligible active influ-
ence on turbulence [22]. In [23], impurity transport obtained 
from a self-consistent treatment is compared with the results of 
the trace impurity approximation for ITER-like profiles using 
a quasilinear fluid model. This indicates that a self-consistent 
treatment may be needed for CZ2  >  0.7, particularly in the 
core which is dominated by TEM turbulence. Another, global 
fluid model was used to show that nickel impurities at concen-
trations of the order of 10−3 (CZ2  =  23.5) can qualitatively 
alter transport properties [24]. In numerical studies based on 
gyrokinetics, non-trace impurities isotopic effects have been 
observed on the quasi-linear turbulent flux, although isotopic 
dependence of the instability linear growth rate is weak [25]. 
Moreover, it has been shown that the effects of impurity con-
centration on the linear growth rate can depend on impurity 
density gradient, using a gyrokinetic integral eigenmode 
equation  in toroidal geometry [26, 27], or performing non-
linear bounce-average gyrokinetic simulations [28]. Recent 
numerical simulations performed with the GENE code [29] 
have shown that the light impurities cannot be considered as 
traces, as they have a non-negligible influence on the linear 
growth rate of the instability. Main ions and electrons as well 
as the impurity species are retained as active species. The 
W-concentration in JET ITER-like Wall experiments can 
reach 10−4 in the L-mode [30]. In order to study JET H-mode 
plasmas, in which the W concentration is also found to be of 
the order of 10−4, the GKW code has been used in the trace 
limit [2]. But central concentrations up to 10−3 are reached 
during the accumulation phase. For this reason, simulations 
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in which W is not treated as passive have been performed in 
order to also investigate the difference with the trace limit. 
Calculations have shown that the passive and active limits 
differ only where the strong accumulation takes place.

In this paper, we aim mainly at estimating the range of 
validity of the passive treatment of high-Z impurities. We 
focus on the turbulent transport of W40+ tungsten. We run a 
series of simulations with self-consistent (active) treatment of 
impurities for a wide range of concentrations, and compare 
the results with a series (for better statistics) of simulations 
with passive impurities.

In conventional gyrokinetics, the dynamics is described in 
a 4D phase-space parameterized by one adiabatic invariant. If 
we limit the kinetic description to magnetically trapped par-
ticles, and rely on assumptions described in section  2, the 
bounce-averaged dynamics can be described in a reduced 2D 
phase-space, parameterized by the energy. The bounce-aver-
aged gyrokinetic model for trapped particle precession reso-
nance-driven turbulence [31–35] is much more numerically 
tractable, and allows parameter scans at reasonable computing 
cost. Recently, a semi-Lagrangian simulation code, TERESA, 
has been developed based on this model, making efficient use 
of parallel computing [37–39]. However, given the limited 
system size adopted in our simulations to reduce computing 
costs, the frequency of modes can reach values comparable to 
the bounce-frequency of tungsten. Therefore, we check that the 
qualitative trends are still valid for lower-Z impurities (carbon) 
for which the bounce-averaged treatment poses no such issue.

In section 2, we describe the bounce-averaged gyrokinetic 
model, along with the boundary conditions, initial conditions, 
and our choice of input parameters. In section 3, we analyze 
the impact of tungsten concentration on the linear growth rate. 
Further, we show how impurities impact the structure of the 
linear mode in energy-space. In section 4, we investigate the 
impact of tungsten concentration on turbulent intensity, and 
on radial density and heat fluxes. Figures 9 and 10 are the two 
main figures of this paper. They show the limit of the passive 
treatment for transport studies. In section 5, we provide a sum-
marizing figure and conclude.

2.  Model

We aim at modeling low-frequency (toroidal precession time-
scale) turbulence in the core of a tokamak plasma composed 
of electrons, deuterium, and high-Z tungsten impurities.

We adopt a reduced bounce-averaged gyrokinetic model, 
which was developed by Depret [33], Sarazin [34] and Darmet 
[35], based on the Tagger–Pellat–Diamond–Biglari model [31, 
32], and has been recently applied to study impurity transport 
[28, 36]. The bounce-averaged gyrokinetic distribution f s of 
trapped particles (or ‘banana centers’) of species s = D, W, e 
satisfies a kinetic equation,

∂fs
∂t

+ [J0φ, fs]α,ψ + ωd,s
∂fs
∂α

= 0.� (1)

Here, ωd,s = EΩd/Zs is the energy-dependent precession fre-
quency, Ωd = (eR2

0Bθ)
−1, Zs is the charge number of species 

s (Ze  =  −1, ZD  =  1 and ZW  =  40), and [. . .]α,ψ are Poisson 

brackets in the phase-space of toroidal precession angle α and 
poloidal magnetic flux ψ (which plays the role of radial coor-
dinate). Furthermore, J0 is an operator which performs two 
successive averages: a gyro-average (on a cyclotron motion), 
and a bounce-average (on a banana orbit) [39]. The radial 
dependencies are neglected in this operator.

This reduced model relies on the following assumptions:

	 •	�The mode frequency is much lower than the bounce 
frequencies of trapped particles for all species. This 
assumption will be checked in section  3. It must be 
stressed that this assumption breaks down for heavy 
impurities since their bounce frequency decreases with 
the square root of their mass number. For our choice of 
parameters, some high-amplitude modes can reach fre-
quencies of the order of the bounce frequency of tungsten. 
Therefore, these results can only be taken as qualitative 
trends, representative of cases with lower-mass impuri-
ties and larger system sizes than chosen here for tungsten. 
The carbon cases we analyze are well within the validity 
regime of the model.

	 •	�The equilibrium configuration is that of a large aspect 
ratio tokamak. However, the inverse aspect ratio ε must 
not be so small that the fraction fp ∼

√
ε of trapped par-

ticles is negligible.
	 •	�Resonant interactions are dominated by strongly trapped 

particles. In this case we can neglect the radial variation 
of precession frequency, and we focus on a single value 
of the pitch-angle.

	 •	�The mode frequency is much lower than the passing 
particles transit frequency.

	 •	�The plasma is at low-β, for which trapped particles pre-
cession resonance-driven modes are mostly electrostatic.

Self-consistency is ensured by a quasi-neutrality constraint, 
including a polarization term ∆̄sφ, which involves a non-iso-
tropic Laplacian operator,

∆̄s ≡
(

q0ρc,s

Lψ

)2
∂2

∂α2 + δ2
b,s

∂2

∂ψ2 .� (2)

Here, Lψ is the radial length of the simulation domain, ρc,s is 
the Larmor radius, and δb,s is the banana width, all in units of 
ψ, and q0 is a typical value of safety factor.

The quasi-neutrality equation reads

∑
s

eZ2
s neq,s

Teq,s

[
1 − ft

ft
(φ− εφ,s 〈φ〉)− ∆̄sφ

]

= 4π
√

2
∑

s

Zs

m3/2
s

∫ ∞

0
J0,sfsE1/2dE,

�

(3)

where f t is the fraction of trapped particles. The average 〈φ〉 is 
an average on the angle α.

In this reduced model, passing particles are treated quasi-
adiabatically. The free parameters εφ,s controls the response 
of passing particles to electric perturbations. For passing 
electrons, we impose εφ,e = 1, consistently with their lack of 
response to the zonal potential in the limit of electron gyro-
radius much smaller than the characteristic radial variation of 
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zonal flows [10]. For passing deuterium and tungsten, which 
do respond to zonal flows, we impose (εφ,D = εφ,W = 0).

In this paper, the TERESA simulations are performed with 
thermal baths at both outside boundary ψ = 0 and inside 
boundary ψ = Lψ, and without any source nor sink. Note that 
in our model, ψ is not the true poloidal magnetic flux which 
is roughly proportional to  −r2, but a shifted version of it, such 
that the magnetic axis r  =  0 corresponds to ψ = Lψ, and the 
outer radial boundary corresponds to ψ = 0. Artificial dissipa-
tion is imposed in buffer regions ψ < 0.15 Lψ and ψ > 0.85 Lψ 
to smooth out the transition between turbulent fluctuations φ, 
and the constraint φ = 0 at ψ = 0 and ψ = Lψ.

Throughout this paper, the equilibrium distribution func-
tions are chosen as

feq,s(ψ, E) =
neq,s

(2πTeq,s/ms)3/2 exp

(
− E

Teq,s

)
.� (4)

This is an approximation of a 2D Maxwellian where the radial 
dependency of the equilibrium Hamiltonian is neglected. 
This implies that curvature pinch is neglected, and that global 
effects due to the radial dependency of the precession fre-
quency are neglected.

The initial radial density and temperature profiles for 
0.2 < ψ/Lψ < 0.8 are linear in ψ,

neq,s(ψ) = n0,s

(
1 + κn

ψ

Lψ

)
,� (5)

Teq,s(ψ) = T0,s

(
1 + κT

ψ

Lψ

)
,� (6)

where the equilibrium densities at ψ = 0, n0,s, are such that ∑
s Zsn0,s = 0, and where κn and κT  are species-independent 

input parameters, which measure the equilibrium radial gra-
dients in terms of ψ (therefore, positive κn,T  correspond to 
typical negative gradients in r). Note that this choice is dif-
ferent from that of [33, 39–41], which adopted a first-order 
Taylor expansion in ψ. For ψ/Lψ < 0.2 or  >0.8, the equilib-
rium gradients are gradually diminished toward zero at the 
boundaries ψ = 0 and ψ = Lψ (as shown in figure  6). This 
is done to avoid instabilities at these boundaries, consistently 
with our boundary condition φ = 0.

The density and temperature ratios between species are 
noted as Cs = n0,s/n0,e, and τs = T0,i/T0,s.

In this paper, we analyze a series of TERESA simulations 
with the input parameters of table 1, for the two cases of table 2, 
and various values of tungsten concentrations CW. Case 1 has 
equal density and temperature gradients, while case 2 has 

a flat density profile but a stronger temperature gradient. In 
all cases, we choose n0,e = n0, and T0,e = T0,D = T0,W = T0, 
where n0 and T0 are used as arbitrary normalization constants. 
Therefore, n0,W = CWn0, and n0,D = (1 − ZWCW)n0 to satisfy 
quasineutrality. The ratios ρc,W/ρc,D and δb,W/δb,D  correspond 
to actual tungsten to deuterium mass ratio (mW/mD = 184/2). 
However, in order to limit the total cost of numerical resources, 
simulations are performed with artificially heavy electrons. 
The ratio ρc,e/ρc,D corresponds to me/mD = 1/9 and the ratio 
δb,e/δb,D corresponds to me/mD = 1/100. To have a self-con-
sistent me/mi ratio would require a value of ρc,e/Lψ of 0.003 
instead of 0.01, which turns out to require quadrupling the 
computing cost to avoid numerical instabilities, and only has 
negligible impacts on our results. Furthermore, based on a 
few simulations with real electron mass, it appears that the 
impact of our hypothesis of heavy electrons is negligible. This 
was expected from the linear dispersion relation, where the 
electron mass only appears as terms of order (nρc,e/Lψ)

2 and 
(kψδb,e/Lψ)

2 (both  ∼10−2 for real electron mass and typical 
wave numbers).

The normalization in the simulation code is such that there 
is no need to choose a particular value for reference density n0, 
temperature T0, magnetic field strength, and safety factor pro-
file q(ψ). The results are obtained and shown as dimensionless 
quantities, for example: the potential as eφ/T0, and growth-
rates as γ/ω0, where ω0 = ΩdT0 (the precession frequency of 
particles with velocity equal to the Deuterium thermal speed).

For these simulations, we use Nψ = 513 grid points 
in radius, Nα = 513 grid points in precession angle, and 
NE  =  128 grid points in energy, with an energy cut-off 
Emax = 20.

For case 2, we observe that the direction of propagation 
is in the negative α direction, which is consistent with TEM 
instabilities dominating, in both linear and nonlinear phases. 
For case 1, the direction of propagation indicates a transition 
from TIM to TEM as the impurity concentration increases, 
with a transition concentration CW,tr ≈ 7 × 10−4.

3.  Linear analysis

For the purpose of this paper, we have developed a linear 
version of the TERESA code, which we have verified in two 
ways: (i) against numerical solutions of the analytic disper-
sion relation, which was obtained in the limit of vanishing 
gradients, and (ii) against single-mode simulations with the 
nonlinear version of TERESA.

3.1.  Growth rate

Figure 1 shows the linear growthrate γ  of the most unstable 
mode, as a function of tungsten concentration CW. The 
growthrate decreases monotonously with CW, consistently 

Table 1.  Input parameters for both cases 1 and 2. Here, a/R0 is the 
aspect ratio.

a/R0 f t

0.1 2/3

Species s Zs ρc,s/Lψ δb,s/Lψ Cs τs

e −1 0.01 0.01 1 1
D 1 0.03 0.1 1 − ZWCW 1
W 40 0.0072 0.024 10−6 to 10−2 1

Table 2.  Input density and temperature gradients.

κn κT

Case 1 0.25 0.25
Case 2 0 0.5

Nucl. Fusion 60 (2020) 036016



M. Lesur et al

5

with [26–28, 42, 43], where impurities were found to have a 
stabilizing effect on trapped particle modes. In the literature, 
the stabilizing effect on ion modes is often interpreted as an 
effect of dilution of the ion density by the impurity. However, 
dilution does not affect electron density and thus does not 
directly accounts for the stabilizing effect on TEM. Based on 
our analysis of the linear dispersion relation, it appears that 
the stabilizing effect on TEM is mainly due a modification 
of the response of passing particles, at least for heavy impu-
rity and low enough concentrations, consistently with [28]. 
Indeed, the coefficient in front of φ in quasineutrality equa-
tion (3) is proportional to 

∑
s Z2

s n0,s, which is roughly propor-
tional to 2 + Z2

WCW . Therefore, heavy impurities can strongly 
affect the response of passing particles.

In the limit of vanishing concentration, γ  depends lin-
early on CW. This behavior is better demonstrated in figure 2, 
which shows, in log-log scale, the relative impact of CW on the 
growth rate, |γ − γ0| /γ0, where γ0 is defined as the growth 
rate in the absence of impurities.

A simulation where impurities are treated as a passive spe-
cies yields γ0, because no-impurity and impurities-treated-as-
passive are the same from the point-of-view of quasi-neutrality. 
Therefore, the relative impact |γ(CW)− γ0| /γ0 is also the 
relative error incurred by the passive treatment. We observe, 
for example, that the error is below 10% for concentrations 
below 10−4, and above 30% for concentrations above 10−3. 
Therefore, W40+ tungsten cannot be treated as passive for 
CW ∼ 10−3, consistently with [28]. Similar conclusions were 
found from gyrokinetic (GENE) simulations of light impu-
rities in a JET-like plasma [29]. Note that CW ∼ 10−3 cor-
responds to CWZ2

W ∼ 1, at which point the contributions of 
tungsten and deuterium in the quasineutrality equation, equa-
tion (3), become comparable in amplitude.

The impact of impurities on the linear growth rate 
in the limit of low impurity concentrations can be esti-
mated analytically. We write the dispersion relation for-
mally as D [ω(CW), CW ] = 0, where ω = ωr + ıγ  is the 
complex frequency. Then, to the first order in CW, the 
dependency of the complex frequency on tungsten concen-
tration, β = dω/dCW |CW→0, is obtained from the following 
relationship,

dD
dCW

∣∣∣∣
CW=0

=
∂D
∂CW

∣∣∣∣
CW=0

+ β
∂D
∂ω

∣∣∣∣
CW=0

= 0.� (7)

The partial derivatives in equation  (7) are calculated in 
appendix to the first order in (πδb,D)

2, (mρc,D)
2, (πδb,W)2 and 

(mρc,W)2, and zeroth order in (πδb,e)
2 and (mρc,e)

2. This pro-
cedure yields γ = γ0 − aω0 CW, with a = 2.2 × 104 for case 
1, and a = 8.9 × 103 for case 2, which is in qualitative agree-
ment with the linear fits shown in figures 1 and 2.

Since the behavior is linear for |γ − γ0| /γ0 < 0.3, there is 
no clear threshold for the validity of the passive approach, as 
far as the linear growth rate is concerned. This is very unlike 
the case of radial fluxes of impurities, as will be demonstrated 
in section 4.

3.2.  Linear mode structure

We investigate the structure of the linear mode. The eigen-
function is obtained from linear, single-mode TERESA sim-
ulations by extracting at a fixed time t1 a single m Fourier 
component of f (α,ψ, E, t1). The time of snapshot t1 is 
chosen such that the eigenfunction had ample time to form 
from the initial arbitrary perturbation. The radial structure 
is sin(πψ/Lψ), consistently with linear theory, which yields 
much larger growth rates for the larger radial wave compatible 
with boundary conditions φ = 0.

Let us now describe the structure of the linear mode in 
energy space, at a given radial location ψ = ψ0. We choose 
ψ0 = 0.4Lψ, near the mid-radius of the simulation box. 
We note φ̂m the m-th Fourier component in α of the poten-
tial, and similarly f̂s,m for f s. Figure  3 shows the absolute 
value of the eigenfunctions f̂s,m/φ̂m, for the most unstable 
mode m. We compare two cases, without (CW  =  0, left) 
and with (CW = 10−3, right) impurities. In both cases, the 

0

2

4

6

8

 10

 12

 14

 16

 18

 20

0  0.002  0.004  0.006  0.008  0.01

γ 
/ ω

0

CW

Case 1 (κn=0.25, κT=0.25)

Case 2 (κn=0, κT=0.5)

Figure 1.  Linear growth rate of the most unstable mode as a 
function of tungsten concentration. Two dashed lines show linear 
fits in the limit of vanishing concentrations, γ = γ0 − aω0 CW, 
where a = 1.7 × 104 for case 1, and a = 8.1 × 103 for case 2.

10-3

10-2

0.1

1

10-5 10-4 10-3 10-2

|γ
 -

 γ
0|

 / 
γ 0

CW

Case 1 (κn=0.25, κT=0.25)

Case 2 (κn=0, κT=0.5)

Figure 2.  Impact of tungsten concentration on the linear growth 
rate of the most unstable mode, in logarithmic scale. The dashed 
lines correspond to the same fit as in figure 1.
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eigenfunction is composed of a first component at E/T0 � 1, 
and a second component, which peaks at E ≈ Ep, where Ep  
is defined as the energy for which ∂feq/∂ψ is maximum. We 
have Ep/T0 = 5/3 − 2κn/(3κT) = 1 in the present case.

In the limit of small ρc and δb, the eigenfunction can be 
estimated as

f̂m,s(ψ, E) =
m ∂feq,s/∂ψ

ωr − mΩdE/Zs + ıγ
φ̂m(ψ).� (8)

The latter expression is in quantitative agreement with the 
values from numerical simulation. Note that, since γr > ω, 
the peak near E  =  Ep  is relatively far from the resonant energy 
Er,s = Zsωr/(mΩd).

As can be seen in equation  (8), the normalized distribu-
tion function f̂m,s/ns does not depend explicitly on CW. In fact, 
here, the impact of impurities on the shape of the eigenfunc-
tion comes mostly from the difference in growth rate, which is 
γ = 18.8ω0 for CW  =  0 and γ = 7.01ω0 for CW = 10−3. The 
frequencies are ω = 2.52ω0 for CW  =  0 and ω = −1.11ω0 
for CW = 10−3.

Let us now check our initial assumption that the mode fre-
quency is much lower than the bounce frequencies of trapped 
particles for all species. Since the typical mode frequency is 
of order of the precession frequency for thermal deuterium, 
ω ∼ ω0, its ratio with the energy-dependent bounce frequen-
cies ωb,s(E) ≈ (εE/ms)

1/2/(q0R0) is

ω

ωb,s
∼

(
ms

mD

T0

E

)1/2 q2
0

(2ε)1/2

ρc,D

a
.� (9)

With our parameters, ω/ωb,e ∼ 0.007(T0/E)1/2 and 
ω/ωb,D ∼ 0.07(T0/E)1/2, which are both much below unity, 
even for deuterium particles at their small resonance energy 
Er,D ≈ 0.37T0. As for tungsten, ωd,W/ωb,W ∼ 0.016(T0/E)1/2, 
but ω/ωb,W ∼ 0.6(T0/E)1/2, therefore some of the modes can 
reach a frequency comparable to the bounce-frequency of 
thermal tungsten particles. For this reason, the current model 
with the current parameters may miss some important effect 
of turbulence on tungsten transport. However, the ratio 
ω/ωb,W  is proportional to ρ∗ = ρc,D/a, which is 0.03 here. For 
lower values of ρ∗, the model regains its validity. Similarly, 
the ratio ω/ωb,W  is proportional to m1/2

s , so the model regains 

its validity for lower-mass impurities. Finally, the results pre-
sented in this paper for tungsten are to be taken as qualitative 
trends, which are only representative of cases with lower ρ∗ 
and/or lower-mass impurities.

4.  Nonlinear analysis

4.1. Turbulence

Let us first consider a typical case, namely case 1 with 
CW = 10−5, before varying the parameters. Figure  4 shows 
the time-evolution of the electric potential at ψ = ψ0. The 
modes m  >  30 stay at low amplitudes (e|φ̂m|/T0 < 3 × 10−3), 
and are not represented. Each mode for m � 30 is represented, 
and we emphasize the most unstable mode m  =  17. We mea-
sure the strength of turbulence via the root mean square (rms) 
of the non-zonal potential, φrms, where φ2

rms =
〈
(φ− 〈φ〉) 2

〉
, 

and averages are over α. In the steady-state, the amplitude of 
the zonal mode m  =  0 is much lower than the rms of the non-
zonal potential.

We observe the formation of TIM turbulence after the linear 
phase. The turbulent field reaches a quasi-steady-state after a 
time of the order of a few ω−1

0 . We recall that ω0 = T0,DΩd is 
the precession frequency of thermal deuterium.

Figure 5 shows how the turbulence strength in the quasi-
steady-state depends on the impurity concentration, for case 
1. Increasing impurities weakens turbulence. The impact is 
linear for CW < 6 × 10−4. This trend is in qualitative agree-
ment with how the growth rate depends on tungsten concen-
tration. However, the potential is not simply proportional to 
the growth rate. This can be seen in figure 5, which includes 
a mixing length estimate, eφ/T0 = γ/(krρc,ikθcs). Although 
there is a rough order-of-magnitude agreement, the slope of 
the linear fit of the potential as CW → 0, is twice that of the 
mixing length estimate.

Since eφrms/T0 ≈ 0.126 − 120CW  (for CW < 6 × 10−4), 
there is no clear threshold for the limit of validity of the pas-
sive approach, but one can conclude for example that a pas-
sive treatment yields a relative error < 10% for CW < 10−4, 
and > 30% for CW > 3 × 10−4. For CW ≈ 2 × 10−3 the rms 
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of the potential is reduced by almost 2 orders-of-magnitude 
compared to CW  =  0.

The main message here is that a linear analysis is not 
enough to conclude about the regime of validity of the passive 
treatment of impurities for the turbulence intensity.

4.2.  Particle transport

Let us first consider the same typical case as in section 4.1, 
namely case 1 with CW = 10−5, before varying the parameters.

Figure 6 shows the radial profiles of density and temperature. 
The figure includes the initial profile (t  =  0), as well as a snapshot 
of the profiles in the quasi-steady-state. We choose ω0t = 5. Note 
that the densities are normalized to n0,s, and one should keep in 
mind that in this case the tungsten density is 105 lower than the 
electron and deuterium densities. In the quasi-steady-state, we 
observe that, for both density and temperature, while the electrons 
and deuterium maintain positive gradients, the tungsten profiles 
are completely flattened. These profiles do not evolve signifi-
cantly for longer times (we have checked until t ≈ 30ω−1

0 ).
Figure 7 illustrates how these radial profiles evolve in 

time, with different timescales. The figure  shows the time-
evolution of the densities and temperatures measured at 
ψ = ψ0 = 0.4Lψ, which is indicative of the time-evolution 
of the global profile. Note that although density and temper
ature increase at this location, it decreases at other locations 
such as ψ = 0.6Lψ. Overall, total particle and energy conser-
vation are ensured (with relative errors of  ∼10−6 and < 1%, 
respectively). After the linear phase, we observe that tungsten 
profiles are flattened within a very short time, ∼0.1ω−1

0 . In 
contrast, electron and deuterium profiles evolve on a much 
longer timescale, ≈5ω−1

0 . The results are qualitatively similar 
for other concentrations—with a strong flattening of the impu-
rity density and temperature profiles—except that, for high 
concentrations (CW > 2 × 10−3), the timescale of flattening 
for impurities becomes of the same order as that for electrons 
and main ions (≈5ω−1

0 ).
These observations—including the strong flattening for 

the impurity—are consistent with a diffusion of pressure for 
all species, where the diffusion coefficient increases with 

increasing turbulence intensity, and where turbulence intensity 
decreases with decreasing electron and/or main ion gradients.

Finally, let us focus on radial particle flux (or density flux). 
The radial particle flux Γ is defined such that, in the absence 
of source, the angle-averaged density satisfies

∂ 〈n〉α
∂t

+
∂Γ

∂ψ
= 0.� (10)

In the following figures, the particle flux is normalized to 
Γ0,s = (n0,s/n0)Γ0, where Γ0 = n0ρ

∗cs, ρ∗ = ρi/a, and 
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cs =
√
(Te + 3Ti)/mD  is the ion sound speed. Note that Γ0 

is linked to a gyro-Bohm estimate ΓgB = ρ∗Ti/(eB0)∂n/∂r  as 
Γ0/ΓgB = cs/v∗,i, where v∗,i  is the ion diamagnetic velocity. 
With this normalization, a positive normalized flux corre-
sponds to a flux from the core toward the edge. To apply this 
normalization, we choose an aspect ratio a/R0  =  0.1, and a 
safety factor q(r)  =  1.2  +  3(r/a)2.

We focus on the flux at the given location ψ = ψ0. In the 
quasi-steady state, Γ(ψ0, t) is a rapidly fluctuating function of 
time, with an average much smaller than the fluctuation ampl
itude. Therefore, it is appropriate to apply a moving average 
in time. To guide the choice of time-window, we compute the 

time-cumulative flux, 
∫ t

0 Γ(ψ0, t′)dt′. Figure 8 shows the time-
evolution of the time-cumulative radial particle fluxes for our 
reference case. We observe that fluxes are mostly positive, 
which is consistent with a flattening of initial density profiles. 
Normalized impurity transport is larger than the transport of 
electrons and main ions, but only because the normalization 
includes density. The non-normalized transport of impurities 
is actually orders-of-magnitude smaller than that of electrons 
and main ions. After the linear phase, impurity flux reaches a 
steady-state value, for ω0t > 1.5, as indicated by the fact that 
the slope of the cumulative flux is roughly constant. Although 
we observe a similar behavior for different values of CW, the 
timing of the linear phase varies. We choose a fixed timing of 
3 < ω0t < 5, which allows to capture the steady-state flux for 
all scanned values of CW. We fit a line within this time interval 
which we use to extract the value of the steady-state impu-
rity flux. Figure 8 includes two line segments which represent 
the fit, plus or minus an uncertainty σ due to the fluctuations. 
Since at the steady-state, the tungsten profiles are flattened, 
one should keep in mind that the instantaneous, local gradi-
ents can be completely different from the values of κn and 
κT , which represent the initial gradients—or the difference 
between boundary conditions.

We repeat the above analysis for case 1 and case 2, and 
various values of tungsten concentration. For a given case and 
a given tungsten concentration, we perform between 2 and 10 

simulations with different random phases of the initial pertur-
bation, to take into account the effects of statistical fluctua-
tions. In total, we performed and analyzed (via an automated 
process) 116 TERESA simulations. Figure 9 shows how the 
tungsten density flux depends on tungsten concentration. Each 
point corresponds to a series of simulations (3 for most points) 
with tungsten treated as an active species, and the errorbar 
indicates the uncertainty σ, which originates from both sta-
tistical fluctuations and uncertainty in the linear fitting of the 
slope of cumulative flux. The horizontal lines show the same 
information but for the simulations where tungsten is treated 
as a passive species.

The density flux can be ignored for case 2, with its flat den-
sity profiles. Therefore we focus on case 1. In contrast with the 
linear growth rate and the turbulence intensity, the density flux 
dependency on tungsten concentration is strongly nonlinear. 
There is a steep transition at CW = 2 × 10−4, below which 
the difference in flux between active simulations and passive 
simulations is not discernible from statistical fluctuations, and 
above which the passive treatment quickly yields large errors.

Although the model is meant as a tool to uncover trends, 
rather than to predict or interpret tokamak experiments quanti
tatively, let us nonetheless check whether the obtained fluxes 
are in the correct order-of-magnitude, keeping in mind that 
we had to assume a somewhat unrealistic aspect ratio of 
a/R0  =  0.1. We compare our results to the flux at mid-radius 
ΓXGCa

W40 ≈ 5 × 1015 m−2 s−1 calculated in a XGCa simulation 
of a JET-like plasma with a concentration CW = 2.5 × 10−4 
of Z  =  40 tungsten [44]. The density gradients are roughly 
similar to our setup, however, the temperature gradients.  
With ρ∗ ∼ 10−3, n0,W/CW ∼ n0,e ∼ 8 × 1019 m−3, and 
cs ∼ 3 × 105 m · s−1, we obtain Γ0,W ∼ 6 × 1018 m−2 · s−1. 
Therefore, ΓTERESA

W40 ≈ 36 × 1015 m−2 s−1, which is 6 times 
higher than the value obtained in XGCa. However, this 
discrepancy appears to be mainly due to the aspect ratio 
a/R0  =  0.1 chosen in our simulations. We performed one 
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additional TERESA simulation, with a JET-like aspect ratio 
a/R0  =  0.4. In this case we obtain ΓTERESA

W40 ≈ 12 × 1015 m−2 
s−1, which is in the correct order-of-magnitude.

4.3.  Energy transport

The radial heat flux q is defined such that, in the absence of 
source, the angle-averaged pressure satisfies

∂ 〈nT〉α
∂t

+
∂q
∂ψ

= 0.� (11)

We apply the same procedure to analyze the heat flux in 
the same 116 TERESA simulations. Figure 10 shows how the 
tungsten heat flux depends on tungsten concentration. The heat 
flux is lower for the case 2 with steeper temperature profile but 
flat density profile, in qualitative agreement with the linear 
growth rates and turbulence intensities. In both cases 1 and 2, 
the heat flux dependency on tungsten concentration is strongly 
nonlinear. Again, this is in contrast with the linear growth rate 
and the turbulence intensity. From this figure, we conclude 
that the passive approach yields accurate estimates of the 
tungsten heat flux for concentrations below CW = 2 × 10−4 
for case 1, and below CW = 10−4 for case 2.

4.4.  Synchronisation of impurity density fluctuations

Let us investigate the physical mechanism responsible for the 
steep transition between passive (trace) and active (non-trace) 
behavior of impurity transport. If we only consider the rms of 
fluctuations, the product φrmsnW,rms decreases with increasing 
tungsten concentration, which partly explains the reduction of 
density transport. However, the transition in terms of transport 
is significantly steeper. For example, between CW = 10−4 
and CW = 10−3, the flux is reduced by a factor 3.9, while the 
product φrmsnW,rms is only reduced by a factor 2.3.

For a given mode m, we denote Φn,W the phase of tungsten 
density fluctuation, and Φφ the phase of the electric potential. 
Radial density transport (in the J0  =  1 limit) is

Γ =

〈
δn

∂φ

∂α

〉

α

.� (12)

Therefore, for a given amplitude of perturbations, the flux is 
maximum for a phase-shift Φn,W − Φφ = ±π/2, and zero for 
a zero phase-shift.

We hypothesize that for high-enough concentrations, 
the impurity plays enough role in the turbulence that it can 
drive a phase-synchronization between potential fluctuations 
and its own density fluctuations. Let us focus on case 1 for 
example. Note that the value of the beginning of the trans
ition, CW = 2 × 10−4, corresponds to CWZ2

W = 0.32, at 
which point the contributions of tungsten and deuterium in the 
quasineutrality equation, equation (3), become comparable in 
amplitude.

To test this hypothesis, we focus on two values of con-
centration within case 1, just below (CW = 10−4) and just 
above (CW = 10−3) the transition. Figure 11 shows the phase 
differential between tungsten density fluctuations and electric 
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potential fluctuations (against time). During the linear phase, 
which corresponds to ω0t < 1 for CW = 10−4 and ω0t < 2.3 
for CW = 10−3, the phase differential stays more or less 
locked to π/2 [2π], for both values of concentration, although 
the locking appears to be stronger for CW = 10−3. Later, in 
the nonlinear, steady-state, the qualitative difference between 
the two cases is much more pronounced. For low concentra-
tion, the phase-shift appears to be essentially random. In con-
trast, for high concentration, the phase-shift for the dominant 
modes is roughly locked to 0, which indicates a synchroniza-
tion phenomenon between impurity density perturbations and 
potential perturbations, which effectively quenches transport. 
We found qualitatively similar results for other values of CW.

In the case CW = 10−3, we further analyzed the rela-
tionship between the phase-shifts and the amplitudes of the 
modes. It appears that temporary significant departures from 
a zero phase-shift, such as for m  =  m3  =  13 at ω0t > 5, corre-
spond to temporary decreases in the mode amplitude. In other 
words, for a given mode, synchronization is robust as long as 
its amplitude is significant in the turbulent spectrum.

For concentrations below 10−4, the results are qualita-
tively similar to those for CW = 10−4, and for concentrations 
above 10−3, the results are qualitatively similar to those for 
CW = 10−3. This synchronization, which occurs only for high 
enough impurity concentrations, appears to be at the origin 
of the abrupt transition between passive and active transport.

5.  Conclusion

In this work, we applied gyrokinetic numerical simulations of 
trapped-particle dynamics to investigate the limit of validity 
of the passive treatment of tungsten impurities. To this aim, 
we compared simulations where the impurity is included in 
the quasineutrality equation  (active treatment) with simula-
tions where it is not (passive treatment). Since the passive 
treatment corresponds to the limit CW → 0, this work can also 
be taken as a simple scan of CW.

Figure 12 summarizes the impact of tungsten concentra-
tion in the case where density gradient and temperature gra-
dient are equal. It includes the linear growth rate, turbulence 
intensity, and impurity density flux, all normalized to their 
limit as CW → 0. There is a transition for all linear growth 
rate, turbulence intensity, and impurity density flux, centered 
around CWZ2

W ≈ 1.1. However, the transition is significantly 
steeper for the flux. Around the middle of the transition (corre
sponding to the value 0.5 on the vertical axis in figure 12), the 
impact of tungsten concentration scales as C0.80

W  for the linear 
growth rate, as C0.82

W  for the turbulence intensity, and like C1.35
W  

for the impurity flux.
We investigated the physical mechanism responsible for 

this difference in behavior between turbulence intensity and 
transport. Our analysis indicates that phase-synchronization 
between impurity density fluctuations and electric potential 
fluctuations occurs for high enough impurity concentrations. 
This synchronization quenches impurity transport.

The steep transition for the turbulent flux may be viewed 
as a threshold, which gives the range of validity of the passive 
treatment, CW < 2 × 10−4. When the temperature gradient is 
finite and the density profile is flat, we obtain qualitatively 
similar results, except for the density flux which simply van-
ishes. For the heat flux, the range of validity of the passive 
treatment is slightly smaller than for the case with equal gra-
dients, CW < 10−4.

Finally, we have performed a similar analysis for C6+ 
carbon, although not as thoroughly as for tungsten. Figure 13 
summarizes the impact of carbon concentration in the case 
where density gradient and temperature gradient are equal. 
There are some qualitative differences compared with the 
tungsten case: (i) the transition for the flux is centered around 
CZ2 ≈ 0.5 (instead of around 1.1), and (ii) the transition for 
the flux is at lower concentration than the transition for turbu-
lence intensity and growthrate, which is opposite to the tung-
sten case. However, our main conclusion stands for carbon as 
well as for tungsten: around a concentration Cimpurity ∼ 1/Z2, 
there is a transition for all linear growth rate, turbulence inten-
sity, and impurity density flux, and the transition is steeper for 
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the flux than for turbulence, and steeper for turbulence than 
for the growth-rate.

Given that, for our parameters, the frequency of dominant 
modes can be comparable to the bounce frequency of tung-
sten, our results should be checked for larger system size, or 
with a non-bounce-averaged gyrokinetic model.
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Appendix.  Analytic estimation of the linear impact 
of impurity concentration

The impact of impurities on the linear growth rate in the 
limit of low impurity concentrations can be estimated ana-
lytically. We write the dispersion relation formally as 
D [ω(CW), CW ] = 0, where ω = ωr + ıγ  is the complex fre-
quency. We define a complex coefficient β as

β =
dω

dCW

∣∣∣∣
CW→0

.� (A.1)

Then, β is estimated from the following relationship,

dD
dCW

∣∣∣∣
CW=0

=
∂D
∂CW

∣∣∣∣
CW=0

+ β
∂D
∂ω

∣∣∣∣
CW=0

= 0.� (A.2)

We obtain β = βN/βD, with βN = ∂D
∂CW

∣∣∣
CW=0

 and βD = −
∂D
∂ω

∣∣
CW=0

In Fourier space, the linearized Vlasov equation yields

f̂m,s(ψ) =
m ∂feq,s/∂ψ

ωr − mΩdE/Zs + ıγ
Ĵ0,sφ̂m(ψ),� (A.3)

where Ĵ0,s is the Fourier equivalent of the operator J0,s. In 
this linear analysis, we assume a strictly positive growth rate, 
γ > 0. Substituting the latter linear response into the quasi-
neutrality equation, equation (3), in Fourier space, yields

∑
s

eZ2
s neq,s

Teq,s

[
1 − ft

ft
− ∆̂s

]
= 4π

√
2
∑

s

Zs

m3/2
s

∫ ∞

0

Ĵ2
0,s ∂feq,s/∂ψ

ω/m − ΩdE/Zs
E1/2dE,

�

(A.4)

for m �= 0, where ∆̂s is the Fourier equivalent of the operator 
∆̄s. To the zeroth order in κn,T(ψ/Lψ) of feq,s(ψ, E), we obtain 
the local dispersion relation [28],

D =
∑

s

Z2
s CsτsDs = 0,� (A.5)

where

Ds = Cn,s − κTIr,s −
[

Csκn + κT

(
xs −

3
2

)]
Id,s,� (A.6)

Cn,s =
a

R0

[
1 − ft

ft
+

(
mq0ρc,s

2Lψ

)2

+

(
kψδb,s

2

)2
]

,� (A.7)

Ir,s =
2√
π

∫ ∞

0
Ĵ2

0,s(ξs)e−ξsξ1/2
s dξs,� (A.8)

Id,s =
2√
π

∫
ξ

1/2
s e−ξs

ξs − xs
Ĵ2

0,s(ξs)dξs,� (A.9)

ξs = E/T0,s, and xs = Zsτsω/(mΩd). In the limit of no impuri-
ties, we recover the dispersion relation of [33, 39].

Carrying out the integration in equation (A.8) yields

Ir,s = 1 − 3(b + c) +
15
4
(b2 + c2 + 4bc)

− 105
4

bc(b + c) +
945
16

(bc)2,
�

(A.10)

where b = [(kψδb,s)/2]2 and c = [(mq0ρc,s)/(2Lψ)]
2. Carrying 

out the integration in equation (A.9) yields

Id,s

2
=(1 − bxs)

2(1 − cxs)
2
[

Zs

|Zs|
√
−πxse−xs − 2

√
xsW(

√
xs)

]

+ (1 − bP1 + b2P2)
2(1 − cP1 + c2P2)

2

+ 2bc
[

1 − xs +
b + c

2
(P2 −

5
4
)

]
+ (bc)2P3,

�

(A.11)

where W is the Dawson integral [45, 46],

W(z) =
1
2
√
πe−z2

erfi(z),� (A.12)

and P1, P2 and P3 are polynomials in xs,

P1 = 1 + 2x,� (A.13)

P2 =
3
4
+

x
2
+ x2,� (A.14)

P3 = 6 +
9x
8

− x2 − x3

2
.� (A.15)

In this paper, Ce  =  1 and CD = 1 − ZWCW, therefore

βN = Z2
WτW DW |CW=0 + ZWτD

(
κnId,D − DD|CD=1

)
.� (A.16)
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Substituting the dispersion relation for CW  =  0, 
τeDe + τDDD = 0, we obtain an alternative expression for the 
numerator of β,

βN = Z2
WτW DW |CW=0 + ZWτDκnId,D + ZWτeDe.� (A.17)

The denominator βD satisfies

mΩdβD = τ 2
DκT ,DId,D − τ 2

e κT ,eId,e

+ τ 2
D

[
CDκn,D + κT ,D

(
xD − 3

2

)]
dId,D

dxD

− τ 2
e

[
κn,e + κT ,e

(
xe −

3
2

)]
dId,e

dxe
.

� (A.18)

Given the relationships between the banana widths and 
Larmor radii of the species, and since m � Lψkψ ∼ π, we 
choose to develop these expression to the first order in (kψδb,D)

2 
and (mρc,D/Lψ)

2, but to the zeroth order in (kψδb,W)2, 
(mρc,W/Lψ)

2, (kψδb,e)
2 and (mρc,e/Lψ)

2. Therefore, for s  =  W 
and s  =  e we approximate Ds as

Ds =
a

R0
αt − κT −

[
Csκn + κT

(
xs −

3
2

)]
Id,s,� (A.19)

where αt = (1 − ft)/ft . For s  =  W and s  =  e we approximate 
Id,s as

Id,s = 2 − 2 Ys(xs),� (A.20)

with

Ys(xs) = e−xs
√
πxs

[
Zs

|Zs|
ı− erfi(

√
xs)

]
,� (A.21)

and we approximate the derivative of Id,s as

dId,s

dxs
=

(1/2 − xs) Id,s − 1
xs

.� (A.22)

For deuterium, we approximate Id,D as

Id,D = 2 + 2 YD(xD) (1 − 2dDxD)− 2dD (1 + 2xD),� (A.23)

where dD = [(kψδb,D)/2]2 + [(mq0ρc,D)/(2Lψ)]
2, and we 

approximate the derivative of Id,D as

dId,D

dxD
= 4 dD (x − 1)− 2 + 2 YD(xD)

[
1

2xD
− 1 + dD (2xD − 3)

]
.

� (A.24)
This development finally yields

β

4mdDxDZW
= κn

1 + 2 xD [1 + YD(xD)]

G
− η

2dDG

− xD η
Q2,p(xD) + Q2,D(xD)YD(xD)

G2 ,
�

(A.25)

where

G = 8x2
DκT + Q2(xD) YD(xD) + Q2(xe) Ye(xe),� (A.26)

η =
a

R0
(1 + ZW)αt + 2κnYD(xD)

+ Q1(xe)− Q1,e(xe)Ye(xe)

+ ZW [Q1(xW)− Q1,W(xW)YW(xW)] ,
�

(A.27)

and Qi are polynomials,

Q1(x) = 2κT x + 2κT ,� (A.28)

Q1,e(x) = 2κT x + (2κn − 3κT),� (A.29)

Q1,W(x) = 2κT x − 3κT ,� (A.30)

Q2(x) = 4κTx2 + (4κn − 12κT) x + (3κT − 2κn),� (A.31)

Q2,p(x) = 4κTx2 + (4κn − 14κT) x + (4κT − 4κn),� (A.32)

Q2,D(x) = 4κTx2 + (4κn − 16κT) x + (9κT − 6κn).� (A.33)

Substituting the input parameters yields β = −1206−  
22 273ı for case 1, and β = 155 − 8938ı for case 2. These 
results can be compared with the values obtained numerically 
from the full dispersion relation. We find that the relative 
inaccuracy in terms of |β| is 5.0% for case 1 and 11.6% for 
case 2.
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