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Abstract
The nonlinear stability of current-driven ion-acoustic waves in collisionless electron–ion
plasmas is analyzed. Seminal simulations from the 1980s are revisited. Accurate numerical
treatment shows that subcritical instabilities do not grow from an ensemble of waves, except very
close to marginal stability and for large initial amplitudes. Further from marginal stability, one
isolated phase-space structure can drive subcritical instabilities by stirring the phase-space in its
wake. Phase-space turbulence, which includes many structures, is much more efficient than an
ensemble of waves or an isolated hole for driving subcritically particle redistribution, turbulent
heating and anomalous resistivity. Phase-space jets are observed in subcritical simulations.

Keywords: ion-acoustic, nonlinear, kinetic nonlinearity, phase-space structures, turbulence,
subcritical, phase-space vortex
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1. Introduction

Ion-acoustic turbulence is a central paradigm of plasma physics
and controlled fusion. When ion and electron temperatures are
similar, linear theory predicts that ion-acoustic waves are stable
(except if the velocity drift between electrons and ions is at least
of the order of the electron thermal velocity), due to strong
ion Landau damping [1]. As a consequence, ion-acoustic
turbulence does not receive much attention in the context of
magnetically confined fusion plasma. However, stability is
a nonlinear issue. Indeed, the growth process of structures
in phase-space can circumvent linear theory [2–7], leading to
nonlinear, or subcritical instability. Furthermore, ion-acoustic
waves constitute the basis for dominant fluctuations in confined
plasmas. Indeed, drift-waves arise from the ion-acoustic
branch, modified by inhomogeneities and geometry effects.
In particular, collisionless trapped-ion and trapped-electron

modes are driven by wave-particle resonance, in the same
way that the current-driven ion-acoustic is. Therefore, the
understanding of phase-space structures and their impact on
ion-acoustic turbulence is an important step toward the advance
of the nonlinear kinetic theory of collisionless plasmas.

One idea concerning subcritical processes follows from
the properties of phase-space structures or granulations, which
are non-wave-like fluctuations. These structures can exchange
momentum and energy via channels which differ from those
of familiar linear wave-particle resonance, and so can tap
free energy when wave excitation cannot [2]. A structure
of particular interest is a BGK-type island of negative phase-
space density perturbation, referred to as a hole [2, 4, 8–14]
or a phase-space vortex. These coherent structures are
spontaneously formed by nonlinear wave–particle resonant
interactions, which trap particles in a trough. These trapped
particles in turn generate a self-potential, leading to a
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self-sustained structure. Like a fluid vortex, a phase-space
hole is not attached to a wave or a mode. The mean velocity
of the hole can evolve away from the resonance, and grow by
climbing up the gradient of a particle velocity distribution.

The impact of PS holes is not limited to stability. PS
holes can drive anomalous transport [15, 16], drive anomalous
resistivity [17], modify the saturation amplitude [18], yield
amplitude oscillations or chaos [19], shift the mode frequency
[11], and couple with zonal flows [20]. These impacts are
relevant in the context of energetic particle-driven activities in
space and magnetic fusion plasmas [21], collisionless magnetic
reconnection [22], collisionless shock waves [23], alpha-
channeling [24] and drift-waves [25].

Multiple structures can coexist and interact, leading to
rich nonlinear phenomena, which we refer to as phase-space
turbulence. In phase-space turbulence theory [26], the system
is treated as an ensemble of structures in phase-space, rather
than an ensemble of waves, as in quasi-linear theory. We can
contrast phase-space turbulence with conventional approaches
in terms of the Kubo number K ∼ ωbτc, which measures the
coherence of turbulence. Here, ωb is the bounce frequency
of trapped particles, and τc is the correlation time of a
structure. Conventional theories that rely on linear waves and
their nonlinear extensions (mode coupling, weak and strong
turbulence theories) require K < 1 for their validity. This
condition is easily violated when wave-particle interactions are
strong. Phase-space turbulence theory concerns the ubiquitous
K � 1 regime.

In this paper, we consider the ion-acoustic instability
in one-dimensional (1D), collisionless electron–ion plasmas
with a velocity drift. Ion-acoustic waves are longitudinal
electrostatic waves, which are commonly observed in space
and laboratory plasmas. Theory and experiments indicate that
ion-acoustic waves are key agents of magnetic reconnection
(via anomalous resistivity) [27], turbulent heating [28], particle
acceleration [29], and play important roles in the context
of laser–plasma interaction [30]. Linear instability requires
that the velocity drift vd exceed some finite threshold vd,cr.
However, nonlinear theory [31, 32] predicts that phase-space
density holes can grow nonlinearly, even for infinitely small
drifts. In such plasmas, electron and ion structures behave like
macroparticles and scatter each other, leading to dynamical
friction (in addition to the usual quasi-linear diffusion), which
drives anomalous resistivity [17]. From a momentum point-of-
view, phase-space holes grow by exchanging their momentum
with other species or with the wave pseudo-momentum
[33]. From an energetics point of view, growing structures
continuously emit undamped waves by the Cherenkov process,
leading to the growth of total wave energy [7, 17]. Holes
can also be thought of as quasi-particle modes of zero or
negative energy [9]. The hole growth rate was obtained far
from [32] and close to [34] linear marginal stability. In
the 1980s, particle simulations of the nonlinear electron-ion
instability, with mass ratio mi/me = 4 and temperature ratio
Ti/Te = 1, were performed [3, 10]. To the credit of the authors,
these simulations were performed three decades ago, when
computing power was roughly 7 orders of magnitude lower
than today. These simulations agree qualitatively with the

theory, and nonlinear growth was observed for vd > 0.4vd,cr,
that is, far from linear marginal stability. Electron holes
were reported to grow in a similar way from either a seed
phase-space hole, or from random fluctuations, even with low-
amplitude initial fluctuations (eφ/T � 10−2).

However, our work suggests that these earlier particle
simulations likely suffered from numerical issues, such as
noise associated with a small number of particles, leading to
spurious conclusions. In particular, nonlinear growth is found
to be much more sensitive to initial conditions than suggested
in [3, 10]. We observe that subcritical instabilities are absent
when the initial perturbation consists of an ensemble of sine
waves with random phases, except close to linear marginal
stability (vd > 0.9vd,cr) and for large initial amplitudes
(eφ/T ∼ 1).

In contrast, a seed local negative perturbation (hole-
like) in the electron phase-space can grow nonlinearly, even
far below marginal stability (vd = 0.38vd,cr) and for small
initial amplitudes (eφ/T ∼ 10−3). Depending on the initial
conditions, a growing hole may keep most of the phase-
space relatively intact (local hole growth), or, on the contrary,
may lead to a turbulent state with significant potential energy
eφ, particle redistribution, heating and anomalous resistivity
(global subcritical instability). Such system-wide effects are
observed for vd = 0.76vd,cr. However, the effects of the seed
phase-space perturbation are indirect. A multitude of small
holes emerge from the wake of the evolving seed perturbation.
It is this phase-space turbulence that drives the subcritical
instability. In other words, phase-space turbulence, rather
than turbulence in the sense of a spectrum of incoherent
waves, leads to substantial nonlinear growth (in general). In
the turbulent state, we observe phase-space jets, which are
elongated structures that enhance redistribution and anomalous
resistivity [35].

2. Model

2.1. Model description

The model describes the collisionless evolution of a two-
species, 1D electrostatic plasma. In addition to academic
interest, a 1D model is relevant for plasma immersed in a
strong, relatively homogeneous magnetic field [36]. The
evolution of each particle distribution, fs(x, v, t), where
s = i, e, is given by the Vlasov equation,

∂fs

∂t
+ v

∂fs

∂x
+

qsE

ms

∂fs

∂v
= 0, (1)

where qs and ms are the particle charge and mass, respectively.
The evolution of the electric field E satisfies a current equation,

∂E

∂t
= −

∑
s

msω
2
ps

n0qs

∫
vfs(x, v, t) dv, (2)

where ωp,s is the plasma frequency and n0 is the spatially
averaged plasma density. The initial electric field is given
by solving Poisson’s equation. We denote δfs ≡ fs − f0,s

and f̃s ≡ fs − f̄s , where f0,s(v) = f̄s(v, 0) is the initial
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velocity distribution, and f̄s(v, t) is the spatial average of
fs . In a 1D periodic system, a spatially uniform current
drives a uniform electric field, which oscillates at a frequency
ωu = ωp,e(1 + me/mi)

1/2. This rapid oscillation of both the
uniform electric field and the uniform current is of little interest
here [37]. Numerically, the average part of E is set to zero,
following common practice [10, 38, 39].

2.2. Numerical simulations

On the one hand, in [6, 40], we described, verified, validated
and benchmarked a semi-Lagrangian kinetic code COBBLES,
capable of long-time simulations of 1D plasmas. A particular
feature of this code is that the surface elements of phase-space
density are locally conserved, up to the machine precision.
Hereafter, we refer to these simulations as Vlasov simulations.
On the other hand, to reproduce the results of [3, 10], we
developed a simple particle-in-cell code, PICKLES (Particle-In-
Cell Kinetic Lazy Electrostatic Solver), which can be switched
between full-f and δf treatments. Hereafter, we refer to these
simulations as full-f PIC simulations and δf PIC simulations,
respectively. We denote the number of marker-particles per
species as Np. The PIC code is used only in section 3.2. The
rest of this paper is based on Vlasov simulations.

Hereafter, we adopt the physical parameters of [3, 10].
The mass ratio is mi/me = 4 (small mass ratio improves
numerical tractability and the readability of phase-space
contour plots). The system size is L = 2π/k1, where k1 =
0.2λ−1

D . The initial velocity distribution for each species is a
Gaussian, f0,s(v) = n0/[(2π)1/2vT,s] exp[−(v−v0,s)

2/2v2
T ,s],

with v0,i = 0. The ion and electron temperatures are equal.
Boundary conditions are periodic in real space. In COBBLES,
we ensure zero-particle flux at the velocity cut-offs vcut,s . We
choose vcut,s = v0,s ± 7vT,s .

All Vlasov simulations are performed with at least
Nx = 768 and Nv = 1024 grid points in configuration-space
and velocity-space, respectively, and with a time-step width
at most �t = 0.1ω−1

p,e. The grid cell size in real space is
�x = 0.04λD . Although the length-scales of interest are
larger than the Debye length, such a small cell size is necessary
to reduce numerical artifacts.

3. Ensemble of waves

3.1. Vlasov simulations

We run a series of Vlasov simulations for different values of
initial drift vd ≡ v0,e − v0,i. The linear stability threshold of
the ion-acoustic mode is vd = vd,cr, with vd,cr/vT,i = 3.92.
The initial velocity distributions are shown in figure 1 for
vd/vT,i = 3.8. The initial perturbation is an ensemble of waves
in the electron distribution,

fe|t=0 =
[

1 +
mmax∑
m=1

km

k1
ε cos(kmx + φm)

]
f0,e(v), (3)

where km = mk1, mmax = 20 (kmax = 4.0λ−1
D ), φm are random

phases, and ε controls the initial electric field amplitude. We
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Figure 1. Snapshots of the velocity distributions in a Vlasov
simulation of subcritical instability. Simulation parameters are
vd/vT,i = 3.8, eφ/T ≈ 0.2 and Nx × Nv = 768 × 8192.
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Figure 2. Time-evolution of the normalized potential energy in
Vlasov simulations for small, incoherent initial perturbation,
eφ/T ≈ 2 × 10−4. Linear theory is shown as dashed lines.

measure the electric field energy by the mean square potential,
φ = 〈ϕ2〉1/2. We define the potential energy as eφ.

Figure 2 shows the time-evolution of potential energy,
normalized to thermal energy, eφ/T , for three linearly stable
cases, and two linearly unstable cases. For all stable cases, we
hide data for times longer than half a numerical recurrence
time, TR/2 = πNv/(10kmaxvT,e). The oscillations for
vd/vT,i < 4 are due to the beating of waves with opposite
phase velocities. We observe that the solutions are consistent
with linear theory. Note that for drift velocities of 4.2 and
4.5, the growth rate increases before saturation. This is in
contrast with the conventional wave saturation, where the
growth rate decreases in time. This phenomenon was predicted
and confirmed in [7]. It appears for barely unstable cases,
above a threshold amplitude, for which the nonlinear growth
rate overcomes the linear growth rate.

The important conclusion here, is that we observe no
subcritical instability. This is in contradiction with [3], where
subcritical instabilities are reported for the same parameters
and vd/vT,i � 1.5, even for low-amplitude initial fluctuations
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Figure 3. Time-evolution of the normalized potential energy in
Vlasov simulations for vd/vT,i = 3.8 and various levels of
incoherent initial perturbation.

with eφ/T � 10−2. We scanned the parameter space
of velocity drift and initial amplitude, and concluded that
subcritical instabilities emerge only when the drift is very
close to linear marginal stability, and the initial perturbation
is relatively large. Figure 3 shows the time-evolution of
normalized potential energy, for vd/vT,i = 3.8, which is only
3% below marginal stability, and for large initial amplitudes.
We do observe a subcritical instability when the initial
amplitude is eφ/T ≈ 0.2, but not below. For vd/vT,i = 0.5,
1.5, 2.5 or 3.0, we did not obtain any subcritical instability even
for initial amplitudes as high as eφ/T ≈ 2. These results are
summarized in table 1, which shows whether an incoherent
ensemble of waves is nonlinearly stable (W↓) or unstable
(W↑). From this table, we conclude that the nonlinear stability
threshold is approximately vd/vT,i = 3.5 (vd/vd,cr = 0.89).

Subcritical instabilities are in many aspects qualitatively
similar to linearly unstable cases. The saturation level
of potential energy is similar, we observe wide particle
redistribution in phase-space, especially of the electrons,
turbulent heating, and significant anomalous resistivity.
Figure 1 includes snapshots of ion and electron velocity
distributions after the nonlinear growth for the subcritical
simulation (vd/vT,i = 3.8) with high initial amplitude
(eφ/T ≈ 0.2). At saturation, the electron distribution is
flattened over a large range, −1 < v/vT,i < 6. The ion
distribution develops a plateau around v/vT,i = 4, which is
due to accumulating ion phase-space vortices.

Phase-space redistribution is associated with anomalous
resistivity. We define the anomalous resistivity η as

n0q
2
i (pi − pe) η = qi 〈E〉 −

(
1

mi
+

1

me

)−1 d (pi − pe)

dt
,

(4)

where 〈E〉 is the spatial average of the electric field (here it
is zero), and ps ≡ ∫

vfs dx dv is the momentum of species
s. For typical tokamak plasma conditions, n0 = 1019 m−3

and Ti = Te = 1 keV, the ion-electron collision frequency
is of the order of νei ∼ 10−7ωp,e (with real mass ratio).
Figure 4(a) shows the moving average (over δt = 16ω−1

p,e)

of η/ηcoll where ηcoll = meνei/(n0q
2
i ) is a typical value of the

collisional resistivity. The maximum anomalous resistivity is 4
orders of magnitude higher than typical collisional resistivity,
for both subcritical and supercritical cases. In addition, ion-
acoustic waves cause both ion and electron heating. We define
the mean thermal energy Ts ≡ (ms/2n0)

∫
(v − ps)

2fs dx dv.
It reduces to the temperature for spatially uniform, Boltzmann
distributions. Figure 4(b) shows the moving average of the
mean thermal energy perturbation δTs = Ts(t) − Ts(0). Both
ion and electron thermal energies roughly double, for both
subcritical and supercritical cases. These results indicate that
the saturated level of turbulence, the anomalous resistivity,
the turbulent heating, etc. are not directly affected by linear
stability. In other words, essential nonlinear phenomena do
not undergo any bifurcation at the linear stability threshold.

3.2. PIC simulations

The simulations of [3], which are in disagreement with the
above Vlasov simulations, were obtained with a full-f PIC
code, with a number of particles limited by the computing
power of the time. We reproduced those simulations with Np =
102 400, and indeed recovered the results of that reference, that
is, subcritical growth for vd/vT,i � 1.5. Figure 5 includes one
example of subcritical instability, for vd/vT,i = 2.5 and initial
amplitude eφ/T ≈ 0.03. Figure 6 is a snapshot of both ion
and electron phase-spaces, at ωp,et = 400. We observe several
electron holes, most noticeably at (k1x, v/vT,i) = (0.9π, 3.0).
We checked that particles follow trapped orbits within the latter
hole.

We ran a series of such full-f PIC simulations for different
values of initial drift. We define the nonlinear growth rate as
γNL = ∂ ln f̃h,e/∂t , where f̃h,e(t) ≡ maxx,v |f̃e| is the depth
of the deepest negative perturbation. Taking an alternative
definition of the nonlinear growth rate as the growth rate of the
potential energy, yields similar growth rates. This is because
the potential is dominated by the largest hole, owing to the
relation ϕ ∼ �v2 ∼ f̃ 2

h,e (see equation (7)). Since the growth
rate depends on the amplitude, we must measure it at some
fixed value of f̃h,e. We choose the same value as the reference,
f̃h,e ≈ 0.1n0/vT,e. Figure 7 shows the measured nonlinear
growth rate as a function of initial drift. The data points
are in agreement with simulation results of [3] (see figure 4).
Besides, they are in qualitative agreement with the nonlinear
instability theory of [41]. The theoretical growth rate was
obtained by solving equation (99) (with the plus sign) in [41],
while assuming a structure velocity v+ = vT,i (the holes have a
wide range of different speeds, but v+ = vT,i is where the hole
growth is expected to be the strongest), a self-binding factor
b = 3 [42], a ratio c = τ s

cl/τ
s = 2.9 [41], and generalized

electron and ion structure lifetime as τe = 40ω−1
p,e and τi = 2τe

[3]. This theory is only meant to give an estimate of the
qualitative behavior. Here we only note that the simulation data
happen to agree qualitatively with the theory for this particular
set of mass ratio, temperature ratio and perturbation amplitude.
A careful validation of the theory is out of the scope of this
paper.

Also shown is the linear growth rate for the most
unstable wave-number, taking into account that the system
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Table 1. Nonlinear stability. W↓ and W↑ mean decay and growth, respectively, of an initial ensemble of wave. H↓, H∼ and H↑ mean hole
decay, local hole growth and global subcritical instability driven by an initial hole-like phase-space perturbation.

vd/vd,cr

0 0.38 0.63 0.76 0.89 0.97

eφ/T 1 W↓, H↓ W↓, H∼ W↓, H↑ W↓, H↑ W↑, H↑ W↑, H↑
10−1 W↓, H↓ W↓, H∼ W↓, H↑ W↓, H↑ W↓, H↑ W↑, H↑
10−2 W↓, H↓ W↓, H∼ W↓, H↑ W↓, H↑ W↓, H↑ W↓, H↑
10−3 W↓, H↓ W↓, H∼ W↓, H↑ W↓, H↑ W↓, H↑ W↓, H↑
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Figure 4. Time-evolution of (a) anomalous resistivity, normalized
to ηcoll = 10−7meωp,e/(n0q

2
i ), and (b) mean thermal energy

perturbation. Three cases are shown, the simulation of figure 1
(vd/vT,i = 3.8, solid curves), a linearly unstable case (vd/vT,i = 4.2,
dashed curves), and the reference case S of figure 16 (vd/vT,i = 3.0,
chained curves).

size allows wave-numbers that are multiples of 0.2λ−1
D

only. Given the agreement with theory, one is tempted to
conclude that the observed instability is physical, rather than a
numerical phenomenon, and that it is indeed the nonlinear ion-
acoustic instability. However, these subcritical instabilities
disappear (except for large initial amplitude and close to linear
marginality) when the number of particles is increased or when
the δf approach is adopted. Figure 5 includes time-series of
potential energy in a full-f PIC simulation with Np = 224,
and in a δf PIC simulation with Np = 102 400 with a similar
initial amplitude (actually thrice larger at t = 0, but similar at
ωp,et = 30). Both cases are stable, indicating that growth in
the simulations of [3] is due to numerical noise. Indeed, we
found that the initial, unperturbed velocity distribution is so
noisy that it is linearly unstable.
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Figure 5. Time-evolution of the normalized potential energy in PIC
simulations for vd/vT,i = 2.5.

With a number of particles as small as 102 400, the
velocity distributions in full-f PIC simulations are very
noisy, and only approximately Gaussian. Figure 8 shows,
for vd/vT,i = 2.5, the initial ion and electron distribution
functions, which were obtained by distributing the particles
into 128 boxes. Substituting the distribution at Np =
102 400 into the linearized model equations, and solving the
corresponding eigenvalue problem, yields a positive linear
growth rate, γL/ωp,e = 0.008. Varying the number of boxes
from 32 to 512, or modeling the distribution by a spline and
increasing the resolution of the discretization yielded similar
values, γL/ωp,e = 0.006–0.009, positive in any case. We
therefore conclude that the instabilities observed in [3] were
not subcritical, but linearly unstable, even when the drift was
below the linear threshold for Gaussian distribution.

The agreement between noisy simulations and theory can
be explained as follows. The noisy distributions are such that,
in small regions of velocity space, ∂vf0,e/me + ∂vf0,i/mi > 0.
This enables waves to grow linearly from small amplitudes
eφ/T � 10−2, which leads to the formation of phase-space
structures by particle trapping. Subsequently, these phase-
space structures grow nonlinearly, in agreement with theory,
but the initial state is not subcritical.

To be clear, our conclusion is not that the theory is wrong.
The theory applies to the growth of a hole that is already
present, not to the growth of a hole from random perturbations.
To assess the nonlinear stability, we must understand what kind
of initial conditions are unstable. In the following section, we
address the stability of an artificial seed structure.
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Figure 6. Snapshot at ωp,et = 400 of the phase-space in the
Np = 102 400, full-f PIC simulation of figure 5 (vd/vT,i = 2.5).
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Figure 7. Growth rate of electron hole. Crosses: γNL measured in
full-f PIC simulations with Np = 102 400. Solid curve: nonlinear
instability theory of [41].

4. Seed structure

We have shown that subcritical instabilities can grow from an
ensemble of waves, but only close to linear marginality and
when the initial amplitude is large. However, it is possible
to drive subcritical instabilities from much smaller initial
amplitude, and even far from marginal stability, by preparing
a self-trapped structure at t = 0.
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Figure 8. Velocity distributions at t = 0 in full-f PIC simulations.

Hereafter, we study the evolution of a local, negative
phase-space density perturbation (hole-like) in the electron
distribution, and drop the subscript e in f̃h,e. The initial
electron distribution is

fe|t=0 = f0,e(v)

−f̃h exp

[
−1

2

(
v − vh

�vh

)2
] [

H(x) − �xh/L

2

]
, (5)

where f̃h(t) is the hole-like perturbation amplitude, vh(t) is its
velocity, �xh and �vh(t) are its width and velocity-width, and

H(x) = 1 + cos

[
2π

x − L/2

�xh

]
, (6)

if |x − L/2| < �xh/2, otherwise H(x) = 0. The initial depth
f̃h(0) is chosen to satisfy the trapping condition [2],

f̃h = n0�vh

6ω2
p,eλ

2

[
(1 + 2λ/�xh)

(
1 − e−�xh/λ

) − 2
]−1

, (7)

where λ is the shielding length, which is such that (kλ)−2 is
the real part of the linear susceptibility. The shape of this
artificial hole-like seed is arbitrary and does not correspond to
maximum entropy.

Let us study in details the evolution of one case,
which we label as S. It will serve here as an example
of a subcritical instability. The parameters for S are
vd/vT,i = 3.0, vh(0)/vT,i = 0.8, �vh/vT,i = 0.2,
and �xh/λD = 2. Figures 9 and 10 show snapshots
of both ion and electron distribution functions in the
reference case S. A video, which shows the evolution of the
distribution functions, their spatial averages, the normalized
potential energy, and the spectrum of potential, is available
(stacks.iop.org/PPCF/56/075005/mmedia). Figure 11 shows
the evolution of the depth, velocity and velocity-width of the
deepest hole. The reader should keep in mind that f̃h is
defined as the depth of the deepest negative phase-space density
perturbation at each instant. In other words, we do not track
one single structure throughout its evolution, but rather switch
to whichever structure is the deepest. Such switching is taking
place betweenωp,et = 1000 and 3000, where the instantaneous
maximum depth alternates between different holes. In these

6
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Figure 9. Snapshots of ion (left) and electron (right) perturbed distribution in the reference simulation S (vd/vT,i = 3.0, vh(0)/vT,i = 0.8,
�vh/vT,i = 0.2, and �xh/λD = 2). Values of ωp,et from top to bottom are 0, 200, 500, 700 and 1000. A contour of constant fe is dashed
in (i).

figures, we observe two distinct phases. In the first phase,
from ωp,et = 0 to 700, the initial artificial seed dominates the
phase-space. In the second phase, after 700, many structures
coexist and interact. Let us separate the discussion into 1. the
evolution of a single hole-like perturbation in the first phase,
and 2. the impacts of many phase-space structures (phase-space
turbulence) in the second phase.

4.1. Single-structure growth

Since phase-space density is conserved along particle
trajectories, the center of a hole, where particles are deeply
trapped, and which therefore follows particle orbits, must
conserve f . Therefore, an isolated hole can grow (decay) by
climbing (descending) a velocity gradient. When the gradient

7
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Figure 10. Same as figure 9, but for later times. Values of ωp,et from top to bottom are 2000, 2500 and 3000.

is positive (negative), it must accelerate (decelerate) to grow
and decelerate (accelerate) to decay. In figure 11, we observe
that the artificial electron seed initially grows, from ωp,et = 0
to 400, by climbing the positive velocity gradient, thereby
accelerating from vh/vT,i = 0.8 to 3.0. The growth stops when
the structure reaches the top of the electron distribution (vh =
vd). Then, from ωp,et = 0 to 400, it decays by descending
the velocity gradient, while still accelerating. It decays until it
reaches a velocity v such that f0,e(v) ≈ f0,e(vh(0)) − f̃h(0).
Before this final velocity is reached, however, the diagnostic
switches to other holes, which are then deeper than the initial
seed. It is these new holes that drive the nonlinear instability at
later times. This process is described in the next section, 4.2.

Whether an artificial hole-like seed initially grows or not
depends on both its characteristics and the plasma drift velocity.
Figure 12 shows the evolution of an electron hole-like seed,
initially located in the region of strong overlap between ion and
electron distributions, for various initial conditions. The ratio
�xh/�vh = 20/ωp,e is arbitrary. For vd = 0 (figure 12(a)),
we observe that all seeds (for the shapes and sizes we tested, as
listed in the legend of figure 12) are damped. This is expected
since in this configuration, there is no free-energy. Note that in
this configuration, an isolated hole must accelerate (descend
the velocity gradient) to decay. Trapped particles accelerate
with the hole. Thus, a phase-space structure can drive transient
velocity-space particle transport, even as it decays.

For vd/vT,i = 3.0 (figure 12(c)), which is relatively close
to linear threshold (vd = 0.76vd,cr), all seeds (for the shapes
and sizes we tested) initially grow. The evolution is similar to
the reference case S. For vd/vT,i = 2.5, results are qualitatively
similar and are not shown here.

For an intermediate value of drift, vd/vT,i = 1.5
(figure 12(b)), which is far from the linear threshold (vd =
0.38vd,cr), the hole growth and subsequent decay depends on
its size and location. When they are located in the velocity-
region of strong overlap between ion and electrons, holes seem
to grow more easily. This is consistent with the underlying
growth mechanism (local momentum exchange between ions,
electrons and waves) and with the predicted theoretical growth
rate of an isolated hole. The hole growth is expected to be
of the order of v2

T ,ev
2
T ,i∂vfe,0(vh)∂vfi,0(vh)ωb, where ωb is the

bounce frequency of a particle deeply trapped in the hole [32].
However, in all cases, the hole eventually decays and no other
phase-space structure is generated. Whether a hole with a
different shape can or cannot trigger phase-space turbulence
remains an open question, since we have studied only six cases.

In (figure 12(b)), we observe that holes initially decay
for a while before starting to grow. The reason may be
that the shape of the artificial initial seed is not optimal
for growth. This hypothesis is supported by the following
analysis. Figure 13 compares two cases, where �vh(0) is
fixed to 0.2vT,i, but �xh(0) differs. If �xh(0)/λD = 2,

8
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Figure 11. Time-evolution of the depth (a) and velocity (b) of the
deepest negative phase-space density perturbation in Vlasov
simulations in the reference case S. The velocity width is shown by
error bars at ±�vh.

which corresponds to a ratio �xh(0)/�vh(0) = 20ω−1
p,e, the

ratio �xh(t)/�vh(t) executes damped oscillations around a
value of 200ω−1

p,e, until it stabilizes. Then the hole starts its
nonlinear growth. If �xh(0)/λD = 5, which corresponds to a
ratio �xh(0)/�vh(0) ≈ 50ω−1

p,e, the hole starts to grow almost
straightaway, suggesting that its shape is closer to the optimal
shape for nonlinear growth.

4.2. Phase-space turbulence

For a velocity drift vd/vT,i = 1.5, we mentioned that, although
the hole initially grows, it eventually decays and no other
phase-space structure is generated. In such cases, we observe
that the electric potential does not increase. The velocity
redistribution is negligible (〈δfs〉/fs,0 < 10%), the mean
thermal energies are constants (δTs/Ts < 0.1%), and the
anomalous resistivity is small (η/ηcoll < 500). Thus, the
nonlinear growth of one isolated hole is observed without
system-wide instability. We refer to this situation as local
hole growth.

This local hole growth contrasts with the global subcritical
instability observed e.g. for the reference case S. Figure 14
shows snapshots of the velocity distributions in the latter case.
We observe wide particle redistribution between t = 1000ω−1

p,e

and t = 2000ω−1
p,e, which is after the initial hole has decayed,

and during the growth of the new holes. We can check that
particles are indeed trapped into the self-emerging structures.
Figure 15 shows the velocity vp of a test electron, which is
deeply trapped by a hole formed around t = 800ω−1

p,e. The
central velocity of the hole vh is estimated by tracking the
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Figure 12. Time-evolution of the depth of the deepest electron
phase-space perturbation (f̃h,e) in Vlasov simulations with an initial
electron seed with �xh/�vh = 20/ωp,e. The initial drift vd/vT,i is
(a) 0.0, (b) 1.5 and (c) 3.0. The reference simulation is marked by S
in (c).

local minimum of f . The velocity of the test electron in
the framework of the hole, vp − vh, is shown to oscillate
around zero, which indicate that particles follow trapped orbits
in phase-space, in the reference-frame of the structure. The
bounce frequency is measured from the time-trace of vp −vh as
ωb ≈ 0.15ωp,e. Another way to estimate the bounce frequency
is to measure the local maximum ϕ0 of the electric potential,
and the spatial extent �xh of the negative perturbation. The
bounce frequency is then given by ω2

b = |qe|k2
hϕ0/me, with

kh = 2π/�xh. This method also yields ωb ≈ 0.15ωp,e for the
same hole. The oscillation is quasi-periodic from t1 = 850ω−1

p,e

to t2 = 1280ω−1
p,e. At t2, the hole appears to be sheared by the

tidal forces exerted by a neighboring, larger hole. The lifetime
of the hole is thus estimated as τc = t2 − t1 = 430. The
Kubo number in the region of phase-space within this hole
is K = ωbτc/(2π) ≈ 10. Repeating this analysis for other
holes among the largest ones, we found Kubo numbers in the
range K ≈ 3–20. This confirms that the simulation is in a
regime of large Kubo number. The merging of holes reduces
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their lifetime. However, merging is rare enough that particles
bounce many times during the life of most large holes.

Figure 16 shows the moving average (over δt = 16ω−1
p,e)

of the potential energy time-series in three cases, including
the reference case S, for vh/vT,i = 0.8. We observe that the
potential energy grows to eφ/T ∼ 0.3, which is of the same
order as the saturated potential in linearly unstable cases. In
the reference case S, we see a clear difference between the first
phase (t = 0−700) and the second phase (t = 700−2000). In
the first phase, a single hole develops (as seen in figures 9(c),
(e) and (g)), and although the field energy grows, it is only
transiently. The field energy then decays back to a value
close to the initial perturbation. In the second phase, where

-2

-1

0

1

2

3

4

5

 800  1000  1200  1400

v 
/ v

T
,i

ωp,e t

vh

vp

(vp-vh) x10

Figure 15. Time-evolution of the velocity vp of a test particle
(electron) trapped in a hole with central velocity vh(t), in the
reference simulation S.
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Figure 16. Time-evolution of the normalized potential energy in
Vlasov simulations with an initial electron hole, for vd/vT,i = 3.0,
vh/vT,i = 0.8, �xh/�vh = 20/ωp,e and varying hole velocity-width.
The reference simulation is marked by S.

multiple holes develop (as seen in figure 9(i) and (b)), the field
energy grows to eφ/T ∼ 0.3 before relaxing to eφ/T ∼ 0.1,
thereby driving a global subcritical instability. Therefore, for
a given initial field energy, phase-space turbulence (multiple
interacting holes) is more efficient than a single hole to drive
the instability.

Figure 4 includes the time-evolution of anomalous
resistivity and perturbed mean thermal energies for the
reference case S. We observe large anomalous resistivity and
turbulent heating, qualitatively similar to the cases with an
initial ensemble of waves. These subcritical instabilities occur
relatively far from marginal stability, even when the initial
potential energy is as low as eφ/T ∼ 10−2. This is in
sharp contrast with the case where the initial perturbation is
a collection of waves. In other words, phase-space structures,
even with non-optimal shapes, are much more efficient than
coherent waves for driving nonlinear instabilities.

To summarize, we observe that many holes, even small,
but when scattered in phase-space, can drive global subcritical
instabilities. In contrast, one single hole, even a large
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one, can evolve while leaving most of the phase-space
intact, without system-wide instability (without significant
potential energy growth, redistribution, heating or anomalous
resistivity). One single hole can drive instabilities indirectly
though, by triggering the formation of many smaller holes in
its wake. This process is detailed as follows. As can be seen
in figure 9, as the initial, artificial hole accelerates within the
region vh < vd, its depth increases (along with its width in
velocity). This increase in depth is due to the trapping of
additional particles. This leaves a trail of negative phase-space
density perturbations in the region vh < vd (see figures 9(c)
or (e)). Then, as the hole enters the region vh > vd, its width
in velocity decreases, and de-trapping occurs. This, in turn,
leaves a trail of positive phase-space density perturbation in
the region vh > vd (see figure 9(g)). In analogy to self-
gravitating matter organizing into hierarchical structures via
the mechanism of Jeans collapse, negative phase-space density
perturbations have a natural propensity to coalesce [8, 43]. The
negative trail bunches into a collection of small holes, scattered
in phase-space (see figures 9(g) and (i)). The turbulent
interaction of these many holes (phase-space turbulence), is
shown in figure 10. From our analysis, we conclude that
phase-space turbulence is a very efficient source of particle-
transport in velocity space (or redistribution), turbulent heating
and anomalous resistivity.

The above nonlinear stability analysis of phase-space
holes is summarized in table 1, which shows whether a hole
decays (H↓), grows but then decays without triggering system-
wide electron redistribution (local growth, H∼) or grows
and trigger such redistribution (global subcritical instability,
H↑). From this table, we conclude that the nonlinear stability
threshold with an initial hole in terms of vd/vT,i is between 1.5
and 2.5.

To study the effect of larger wave-lengths, we ran many of
the simulations above with a quadrupled system size, allowing
wave-numbers as small as 0.05λ−1

D . We did not find any
qualitative difference in the results.

Recently, we have discovered a new kind of self-organized
structure, called a phase-space jet [35]. In figure 9(i), we
superimposed a dashed curve of constant fe (not constant f̃e),
which spans a velocity range 3vT,i = 1.5vT,e. This structure
is highly anisotropic. It has a lifetime τjet ≈ 20ω−1

p,e, which
is comparable to the average time it takes a particle to change
its velocity by vT,e, τtravel ≈ 25ω−1

p,e. Thus it is a phase-space
jet, which can facilitate electron redistribution. We conclude
that phase-space jets are spontaneously created in subcritical
(as well as linearly unstable) conditions.

5. Discussion

We now turn to a discussion of experimental scenarios, the
effect of collisions, of a magnetic field and of the mass ratio.
The purpose of this section is not only to clarify caveats, but
also to stimulate further studies, and is more of a speculative
flavor.

5.1. Experimental scenarios

Our numerical analysis clarify the process of phase-space
structures formation. If the system is linearly unstable, a
turbulent state can be reached, in which particles are randomly
scattered, leading to fine-grain structures that act as seeds. If
the system is linearly stable, we can speculate that at least
four routes to instability are possible. The first route was
demonstrated in figure 3. It corresponds to the growth from
random fluctuations. This route is limited to an initial barely
stable equilibrium and requires large amplitude perturbations.
The initial perturbation (e.g. thermal noise) can be seen as an
ensemble of waves, which will trap particles and form seed
structures that can grow nonlinearly. The second route was
demonstrated in figure 12(c). It corresponds to the growth
of a single hole. Such holes may be externally driven by
the experimental setup or by physical processes that are not
included in this model. As we have seen, a single hole may
or may not lead to phase-space turbulence. We speculate
the existence of a third route, which would be a transition
from supercritical to subcritical instability on a fluid time-
scale. Fluid parameters of the background plasma such as
fluid velocities or temperatures may evolve, on a slow time-
scale, due to processes that are not included in this model, such
as an applied electric field, external heating, or other magneto-
hydrodynamic instabilities. This may lead to a transition from
a linearly unstable system to a linearly stable state. Phase-
space turbulence that originates from linearly-driven seeds
should be able to survive this transition. A fourth route
was demonstrated by NGuyen [44, 45]. It is a transition
from supercritical to metastable (subcritical steady-state) on
a kinetic time-scale. As the wave grows linearly, the ion
resonance width increases. Eventually, trapped ions absorb
wave energy at a rate for which the total nonlinear growth
rate vanishes. Such process can result in a metastable steady-
state, where phase-space structures may be continuously
created and dissipated. These scenarios are summarized in
table 2.

5.2. Effect of collisions

This work is concerned with collisionless plasma, but even
small collisions can have qualitative effects on the nonlinear
evolution of wave-particle interactions [12, 46]. If a collision
operator that tries to recover a Gaussian distribution is
introduced, we expect to find regimes of intermittent, rather
than transient, turbulence. This is a speculation, based on the
known effects of collisions on phase-space structures in the
bump-on-tail instability.

5.3. Effect of the mass ratio

Phase-space holes in pair plasmas with small mass ratios are
ubiquitous in semiconductors and space [47]. However, the
small mass ratio mi/me = 4 adopted in this work brings the
question of applicability of our findings to the most common
hydrogen-ion plasma. In the opposite limit of an electron–
oxygen-ion plasma with mass ratio mi/me = 29 500, a single
electron hole remains stationary for a hundred ω−1

p,e, until an ion
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Table 2. Scenarios that may lead to a turbulent state with phase-space granulation. Here, IP is short for initial perturbation, and transition
refers to transition from supercritical to subcritical conditions.

Linearly Seed PS Requires Sensitive to
Scenario stable structure(s) high-amplitude IP details of IP

Supercritical instability No Trapping islands No No
Marginal stability Barely Thermal noise Yes Yes
External drive Yes Externally-driven hole Yes No
Fluid transition Yes Pre-existing structures No No
Kinetic transition Yes Pre-existing structures No No

density cavity is formed [48]. Whether phase-space turbulence
and subcritical instabilities develop or not on a ion kinetic
time-scale (ω−1

p,i ) in large mass-ratio plasma remains an open
question. Moreover for larger mass ratio, the phase-space
turbulence will probably not affect the ion distribution and
its mean thermal energy.

5.4. Effect of a magnetic field

While in this work we focused on current-driven ion-acoustic
instability in unmagnetized plasmas, similar scenarios can be
developed for magnetized plasmas. Formation of a single
phase-space structure is reported in [25]. In that paper, it was
shown that a drift-hole extracts free energy more efficiently
than linear waves do. The turbulent case with many structures
is discussed in [15]. In this work it was shown that in trapped-
ion resonance driven, ion temperature gradient instability,
transport is determined, not by quasi-linear turbulent diffusion,
but rather by dynamical frictions exerted on turbulent trapped-
ion granulations. More recently, it was shown that both
a coherent drift-hole and an ensemble of granulations can
interact with zonal flows [20, 49, 50]. The impact of zonal
flows on transport driven by trapped-ion granulations was
formulated as a part of dynamical friction [51]. In magnetized
space plasmas, phase-space turbulence and jets are promising
candidates mediators of magnetic reconnection via anomalous
resistivity.

6. Summary

Accurate Vlasov simulations of subcritical two-species plasma
have shown that subcritical excitation of the ion-acoustic
instability is much more sensitive to initial perturbation than
was reported in the existing literature. If, on the one hand,
the initial perturbation is an ensemble of wave, a system with
finite ion–electron relative drift does not evolve if it is linearly
stable. However, if it is close to marginal stability, and the
initial perturbation is very large, the system absorbs the wave
energy to form phase-space structures. These structures allow
the system to relax by transporting trapped particles throughout
the phase-space. In the final stage, a velocity plateau is formed
in the electron distribution. If, on the other hand, the system
has an initial coherent structure, then it evolves even for small
drift velocities. The stability of the initial structure is much
more akin to the BGK stability problem. When the initial
structure is unstable, the system may or may not ultimately
relax into a velocity plateau, depending on the drift velocity
and the parameters of the initial structure.

Table 1 summarizes our nonlinear stability analysis,
showing, in the parameter space of initial velocity-drift and
potential energy, where we have observed global subcritical
instability (↑), from either an ensemble of waves (W) or an
artificial hole (H). These results are in disagreement with
earlier numerical works. In fact, earlier simulations were so
noisy that the initial distribution was linearly unstable. Thus,
this paper reports the first simulation of subcritical ion-acoustic
instability.

When the velocity drift is finite, a single electron phase-
space hole can grow nonlinearly by climbing the velocity
gradient. After it reaches the top of the electron distribution
v0,e, it decays while still accelerating. This process leaves
a trail of negative fe perturbations in the v < v0,e half of
the phase-space, and a trail of positive perturbation in the
other, v > v0,e, half. Negative perturbations have a natural
propensity to coalesce, and form many holes. This process can
overcome ion Landau damping when vd > 0.5vd,cr (roughly).
When many holes are formed, a large region of phase-space
becomes turbulent, and individual holes lose their identity, and
so resemble granulations [52]. Phase-space turbulence is very
effective in flattening the electron distribution, heating both
ions and electrons, and driving anomalous resistivity [17].

We have shown the existence of phase-space jets in states
resulting from subcritical instabilities. Jets are studied in a
separate paper [35]. They are elongated closed contours of
constant f , which coexist with holes. These jets facilitate
particle redistribution and drive anomalous resistivity.
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