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Trapped ion resonance-driven turbulence is investigated in the presence of electron dissipation in a

simplified tokamak geometry. A reduced gyrokinetic bounce-averaged model for trapped ions is

adopted. Electron dissipation is modeled by a simple phase-shift d between density and electric

potential perturbations. The linear eigenfunction features a peak at the resonant energy, which

becomes stronger with increasing electron dissipation. Accurately resolving this narrow peak in

numerical simulation of the initial-value problem yields a stringent lower bound on the number of

grid points in the energy space. Further, the radial particle flux is investigated in the presence of

electron dissipation, including kinetic effects. When the density gradient is higher than the temper-

ature gradient, and the phase-shift is finite but moderate (d � 0:02), the particle flux peaks at an

order-of-magnitude above the gyro-Bohm estimate. Slight particle pinch is observed for d < 0:003.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4974269]

I. INTRODUCTION

Experimental evidence points to drift-wave turbulence

as the dominant source of cross-field transport of particles

and energy in tokamaks. In this context, we aim at furthering

the understanding of fundamental mechanisms involved in

this complex, multiscale, coupled system.

A global effort has been ongoing, mainly in the last two

decades, to develop the theory based on gyrokinetic numerical

simulations.1 The effort has been mainly focused on accuracy

in real space, to include, e.g., realistic fusion experiment

geometry, or modes with disparate scales, which are strongly

modified by their coupling. On the other hand, the effort on

accuracy in energy space is rather limited in the framework of

drift-wave turbulence, although there is evidence of small-

scale (Dvjj� vth) velocity-space structures in gyrokinetic sim-

ulation of drift-wave turbulence.2 This poses a challenge for

the conventional gyrokinetic approach, because resolving

fine-scale structures in energy space makes such simulations

very costly in terms of computing power.

There is a class of drift-waves that are driven by reso-

nance with particle motion. In weakly collisional plasmas,

resonant wave-particle interactions in general can lead to fine-

scale structures in the velocity space. Therefore, we would

like to propose a numerical investigation of resonance-driven

drift-waves with a sufficient accuracy in the whole variable

space. Here, “sufficient” remains to be quantified. To reach

sufficient accuracy at reasonable cost, we sacrifice complete-

ness for tractability.

In conventional gyrokinetics, the dynamics is described

in a 4D phase-space parametrized by one adiabatic invariant.

If we limit the kinetic description to magnetically trapped

particles, and rely on assumptions described in Section II, the

bounce-averaged dynamics can be described in a reduced 2D

phase-space, parametrized by the energy. The bounce-

averaged gyrokinetic model for trapped ion precession

resonance-driven turbulence3–7 is much more numerically

tractable and allows a large increase in accuracy in velocity-

space (thousands grid points in energy) at reasonable comput-

ing cost. As discussed in Section V, this makes it a promising

toy model for bootstrapping the numerical investigation of

drift-wave granulation. Recently, a semi-Lagrangian simula-

tion code, TERESA, has been developed based on this model,

making efficient use of parallel computing.8,9

In the context of trapped ion resonance-driven turbu-

lence, electron dissipation is an essential ingredient: it desta-

bilizes a range of modes, often called as electron roots, which

propagate in the electron diamagnetic direction,10 and it

drives radial particle transport. Therefore, we apply in this

paper an electron dissipation model to the reduced bounce-

averaged gyrokinetic model. To be consistent with the idea of

a minimum model, we model electron dissipation as a simple

nonadiabatic modification of the Boltzmann response.10–13

It is expressed as a phase-shift between electron density and

perturbed electric potential, n̂e=n0 ¼ ð1þ imdÞe/̂=Te (in

Fourier space), where m is the mode number in precession

angle, and d is an input, constant parameter.

In Section III, we analyze the linear structure in energy

space of the trapped ion resonance-driven mode. A strong

peak is found at the resonant energy, with a narrow width at

half maximum DE ¼ 0:2 T0. This linear energy-space struc-

ture is stronger for higher electron dissipation. Resolving

this peak with a 10% (1%) accuracy requires 256 (1024) grid

points in the energy direction, which is significantly higher

than the typical number of grid points in, e.g., parallel veloc-

ity in conventional gyrokinetic simulations.a)maxime.lesur@univ-lorraine.fr
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Furthermore, kinetic effects may play an important role

in radial transport. In Section IV, we investigate the peak

radial particle flux. The dependency of peak particle flux on

d is similar to that of the maximum linear growth rate. When

the density gradient and temperature gradient are similar,

particle flux is of the order of a gyro-Bohm estimate for high

enough electron dissipation, d > 0:005. When the density

gradient is significantly larger than the temperature gradient,

that is, when there are electron roots with growth-rates com-

parable to that of most unstable ion roots, particle flux peaks

at an order-of-magnitude above the gyro-Bohm estimate for

d > 0:005. Slight, transient particle pinch is observed in the

case of higher density gradient, for smaller values of d.

II. MODEL

We adopt a reduced bounce-averaged gyrokinetic model,

which was developed by Depret,5 Sarazin,6 and Darmet,7

based on the Tagger-Pellat-Diamond-Biglari model.3,4 The

bounce-averaged gyrokinetic distribution f of trapped ions (or

“banana centers”) satisfies a kinetic equation

@f

@t
þ J0/; f½ �a;w þ EXd

@f

@a
¼ 0: (1)

Here, EXd ¼ xd is the energy-dependent precession frequency,

and ½…�a;w are Poisson brackets in the phase-space of toroidal

precession angle a and poloidal magnetic flux w (which plays

the role of radial coordinate). Furthermore, J0 is an operator

that performs two successive averages: a gyro-average (on a

cyclotron motion) and a bounce-average (on a banana orbit).

Here, physical quantities are normalized as listed in Table I.

This reduced model relies on the following assumptions:

• The equilibrium configuration is that of a large aspect ratio

tokamak. However, the inverse aspect ratio � must not be

so small that the fraction fp �
ffiffi
�
p

of trapped particles is

negligible.
• Resonant interactions are dominated by strongly trapped

ions. In this case, we can neglect the radial variation of

precession frequency, and we focus on a single value of

the pitch-angle.
• The mode frequency is much lower than the passing ion

transit frequency.

• The plasma is at low-b, for which trapped ion precession

resonance-driven modes are mostly electrostatic.

Self-consistency is ensured by a quasi-neutrality con-

straint, including a polarization term �D/, which involves a

non-isotropic Laplacian operator

�D � q0q0

a

� �2 @2

@a2
þ d2

b

@2

@w2
: (2)

Here, q0 is the ion Larmor radius, and db is the trapped-ion

banana width.

Conventionally, an adiabatic response of electrons is

assumed. Here, we take into account the non-adiabatic response

of electrons, due to collisional dissipation. In the literature, sev-

eral ways have been adopted to model electron dissipation:

(1) solving a kinetic equation for trapped electrons as well

and including a collision operator,

(2) constant phase-shift implemented by a term of the form

id in the Poisson equation,

(3) an ad hoc model with an arbitrary cut-off for high mode

numbers.14

Here, we adopt the approach number 2. We write the

Poisson equation as

C1 /� h/i þ F�1 idm/̂m

� �h i
� C2

�D/

¼ 2ffiffiffi
p
p
ð1

0

J0 Eð Þf
ffiffiffi
E
p

dE;
(3)

where F�1 is the inverse Fourier transform operator, and /̂m is

the m-th component of the Fourier decomposition in a of /.

Here, C1 ¼ sC2=fp and C2 ¼ exd;0Lw=T0 are dimensionless,

constant input parameters, which account for the fraction of

trapped particles fp and ion/electron temperature ratio s. The

average h/i is an average on the angle a. Electron dissipation is

modeled by a phase-shift between / and density perturbation,

dm � md, where d is a constant, real, input parameter. This

approximation stems from the linearized drift-kinetic equation

for electrons. Here, we have assumed �e;i=�0 < x � x�
< �i;i=�0, where x� is a diamagnetic drift frequency, and �e;i

and �i;i are ion-electron and ion-ion collision frequencies. In this

regime, d can be approximated as d � �3=2
0 x�ege=�ei, where

ge ¼ dlnTe=dlnne is the ratio between gradients in equilibrium

electron density and temperature profiles.

The advantages of method 2 are (a) decreased computa-

tion cost, (b) analytical tractability, and (c) consistency with

the idea of a minimalist kinetic model with necessary ingre-

dients only. An analogy can be made between the phase-shift

d in trapped-ion turbulence and the wave dissipation rate cd

in the Berk-Breizman model for the bump-on-tail instabil-

ity.15 Both are minimalist models for investigating funda-

mental physical mechanisms introduced by dissipation in

resonance-driven instabilities.

We have implemented the idm term in the TERESA code.

As a first verification, we confirm in Appendix A the

expected relationship between density and potential pertur-

bations during the linear phase for unstable modes. As fur-

ther verification, the simulations are compared with solutions

of the dispersion relation in Appendix B. Note that in

TABLE I. Normalization. Physical quantities are noted without a hat, and

dimensionless quantities with a hat. Here, xd;0 � q0T0=ðer0R0B0Þ is a typi-

cal precession frequency of strongly trapped ions at E¼T0, n0 and T0 are

arbitrary normalizing ion density and temperature such that n̂ ¼ T̂ ¼ 1 at

ŵ ¼ 1, and Lw is the radial size of the simulation box in magnetic flux units.

Note that the minor radius a, the Larmor radius q0, and the banana width db

are all expressed in units of W here. In the main text, the notation “̂” is omit-

ted for clarity.

Quantity e.g. Normalization

Time t;x�1 t̂ ¼ xd;0t

Length r r̂ ¼ rðB0=q0LwÞ1=2

Poloidal magnetic flux w; a;q0; db ŵ ¼ w=Lw

Electric potential perturbation / /̂ ¼ /=ðxd;0LwÞ
Energy E Ê ¼ E=T0

Density n n̂ ¼ n=n0

Temperature T T̂ ¼ T=T0
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Appendix C, we derive an analytic, explicit expression for

the linear frequency and growth rate of the ion root

(ReðxÞ > 0), including the dissipation term, in the limit of

small growth rate c=x� 1.

In this paper, the TERESA simulations are performed with

thermal baths at both inside boundary w¼ 0 and outside bound-

ary w¼ 1. Artificial dissipation is imposed in buffer regions w <
0:15 and w > 0:85 to smooth out the transition between turbu-

lent fluctuations /, and the constraint / ¼ 0 at w¼ 0 and w¼ 1.

Throughout this paper, the equilibrium distribution func-

tion is chosen as

Feqðw;EÞ ¼ e�E 1þ ðjTðE� 3=2Þ þ jnÞð1� wÞ�;½ (4)

where jn � �@ log neq=@wjw¼1 measures the equilibrium

density gradient, and jT measures the temperature gradient,

similarly. This is a first-order Taylor expansion of

neqT
�3=2
eq expð�E=TeqÞ at w¼ 1, which was also adopted in

Refs. 5, 16, and 17 (but with a different definition of w,

where w¼ 1 at the core, w¼ 0 at the edge).

III. ENERGY-SPACE STRUCTURE

Let us consider a flat density profile, jn ¼ 0. The input

parameters of the model are shown as Case 1 in Table II. In

this case, the dispersion relation yields a branch with positive

real frequency, which corresponds to propagation in the ion

diamagnetic direction. It is often called as the ion root.

We investigate the linear energy-space structure for the

ion root of the trapped-ion-mode. This eigenfunction is

obtained from single-mode TERESA simulations by extracting

at a fixed time t1 a single m Fourier component of

f ða;w1=2;E; t1Þ, where w1=2 ¼ 0:5 corresponds to the mid-

radius of the simulation box. It is then normalized by the abso-

lute value of the m component of /ða;w1=2; t1Þ. The time of

snapshot t1 is chosen around the end of the exponential growth

(and before the decrease of growth-rate due to nonlinear satu-

ration), in order to give enough time for the eigenfunction to

form from the initial arbitrary perturbation. In this section, the

hat notation for Fourier components is omitted.

Fig. 1 shows the eigenfunction dfm, for an arbitrary

mode number, m¼ 10, obtained from a simulation with

NE¼ 2048 grid points in energy. We compare two cases,

without (d¼ 0, left) and with (d ¼ 0:02, right) electron dissi-

pation. In both cases, there is a peak at E=T0 � x=ðmXdÞ,
which corresponds to the resonance x ¼ mxdðEÞ.
Interestingly, this peak becomes stronger as d increases.

Note that the peak is narrow, especially for the imaginary

part, with a full width at half maximum DE ¼ 0:2 T0 in the

case of Fig. 1(b). We have performed a scan (restricted to

powers of 2) in the number NE of grid points in the energy

direction. We found that obtaining the eigenfunction within a

10% accuracy requires NE¼ 256 grid points (here, the energy

cut-off is Emax ¼ 20 T0). A 1% accuracy requires NE¼ 1024

grid points. That is true even though we adopted a regular grid

spacing in
ffiffiffi
E
p

(rather than in E), which favors the resolving

of small-scale structures at relatively low energies E � T0.

We investigated the impact of sub-resolution of the reso-

nance in the energy space on the linear growth rate, and the

peak field amplitude (of mode m¼ 10 only). Table III gives

the relative errors for NE¼ 24, 48, 96, 192, and 384, taking a

simulation with NE¼ 1536 as a reference case. Here, the

structure of the grid in energy is homogeneous in E1=2. We

have also performed simulations with different grid struc-

tures, namely, homogeneous in E, or homogeneous in E1=3,

but these lead to slightly increased inaccuracies.

In the limit of small q0 and db, the eigenfunction can be

estimated as

dfm ¼ �
mjTe�E E� 3=2ð Þ
x� mXdEþ ic

/m: (5)

With the simple approximation /m ¼ j/mj, the latter expres-

sion is in quantitative agreement with the values from

numerical simulation (Fig. 1). The maximum absolute error

in terms of jdfmj=j/mj is 0.0016 for d¼ 0 and 0.0069 for

d ¼ 0:02. Eq. (5) does not depend explicitly on d. In fact,

here, the dominant cause of shrinking of the resonance with

finite electron dissipation is a twice smaller c=x ratio for

d ¼ 0:02 compared to d¼ 0.

IV. NONLINEAR ANALYSIS

Let us consider a typical time evolution of an initial

value TERESA simulation. After a linear phase, the electric

field energy first saturates to some peak value, before decay-

ing to a quasi-steady-state average value. We focus on the

first, transient peaking of electric field amplitude, which cor-

responds also to the highest peak of both field amplitude and

particle flux. Understanding the first and strongest peak may

serve the understanding of the quasi-steady state.

TABLE II. Input parameters.

C1 C2 Xd q0q0=a db jT jn

Case 1 0.1 0.1 1 0.01 0.1 0.15 0

Case 2 0.1 0.1 1 0.01 0.1 0.1 0.2

Case 3 0.1 0.1 1 0.01 0.1 0.15 0.15

FIG. 1. Eigenfunction for Case 1 (flat density profile), m¼ 10, at w ¼ 0:5.

(a) No electron dissipation. (b) Finite electron dissipation d ¼ 0:02. A dotted

vertical line corresponds to the energy such that the resonance condition

x ¼ mxdðEÞ ¼ mXdE is satisfied.

TABLE III. Impact of sub-resolution in energy space. Relative error (in per-

cent), taking a NE¼ 1536 simulation as the reference case.

NE 24 48 96 192 384

Linear growth rate 63 4.6 2.6 0.013 3.6 	10�6

Peak field amplitude 50 1.3 2.2 0.063 5.8 	10�4
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We ran a series of TERESA simulations for the three cases

of Table II and various values of electron dissipation rate d.

For these simulations, we use Nw ¼ 257 grid points in radius,

Na ¼ 513 grid points in precession angle, and NE¼ 1024

grid points in energy, with an energy cut-off Emax ¼ 20. This

fine grid in energy is necessary to obtain the flux with good

accuracy, at least in some cases. Indeed, similar to the former

section on the energy-space structure, although simulations

with coarser grids (NE ¼ 96� 256) suffice to obtain a quali-

tative trend, a statistical quantitative convergence requires

finer grids (NE ¼ 512� 1024). Fig. 2 shows the peak field

energy (a), peak zonal flow energy (b), and peaks (minimum

and maximum) of radial particle flux at w ¼ 0:5 (c). Here,

the field energy is defined as e~/=T, where ~/ is the root

mean square (rms) of /� h/ia, over a radial domain

0:25 < w < 0:75, which excludes the buffer regions. The

zonal flow energy is defined as e/0=T, where /0 is the rms

of /, over the same radial domain. The radial particle flux

Cw is defined such that the angle-averaged density satisfies

@hnia=@tþ @Cw=@w ¼ 0 in the absence of source.

Unsurprisingly, the dependency of peak particle flux on

d is similar to that of the maximum linear growth rate (see

Fig. 7(b) for a graph of c against d). However, peak field and

zonal energies show a different behavior, especially in the

presence of a density gradient, peaking at d � 0:005 even

though c peaks at d � 0:02. In the case of the flat density

profile (Case 1), field energy, zonal energy, and particle flux

all decrease roughly monotonously with d.

Let us compare the particle flux in Case 2 and Case 3, in

the presence of finite dissipation, d > 0:005, after normalizing

it by a gyro-Bohm estimate CgB ¼ q�T0=ðeB0Þ@n=@r. If we

choose q0�=q� ¼ 40, the flux peaks at Cw=CgB � 8 for Case

2, and Cw=CgB � 1 for Case 3. We note that from linear anal-

ysis, it can be concluded that electron roots have larger growth

rates in Case 2 than in Case 3 for fixed d. Therefore, electron

roots may be responsible for pushing the particle flux up to an

order-of-magnitude above the gyro-Bohm estimate.

Interestingly, when density gradient dominates (Case 2),

we observe a slight pinch of particle (Cw < 0) for

d � 0:0015� 0:002, where the most unstable mode propa-

gates in the electron diamagnetic direction. This can be seen

in the inset of Fig. 2(c). The pinch can also be seen in Fig. 3,

which shows a spatio-temporal map of the particle flux for

Case 2 and d ¼ 0:0015. The pinch is strongest at time t � 3:3
and stays significant in later times around the mid-radius of

the simulation box (w � 0:5). To invoke a density pinch, we

need to check that the negative flux is not due to a reversed

density gradient. Between t¼ 3.0 and t¼ 3.7 (time period dur-

ing which the negative flux is most significant), the density

gradient is never reversed throughout all the simulation box.

More precisely, the gradient �@n=@W stays larger than

0:1n0=LW (about half of the initial jn) if we exclude the buffer

regions and larger than 0:078n0=LW if we include them. When

density gradient and temperature gradient are similar (Case 3),

we observe a weaker pinch at d ¼ 0:002.

As a caveat, the model adopted in this paper does not

allow to accurately characterize the nonlinear saturation.

Indeed, it was shown that saturation is achieved via a spec-

tral transfer that involves electron drift waves.18,19

Investigating the quasi-steady-state obtained in our simula-

tions may be relevant, for example, to reveal hints of new

physical mechanisms, but not for quantitative interpretation

or prediction of experimental data.

V. APPLICATIONS

The bounce-averaged gyrokinetic model is not to be

readily applied to the quantitative interpretation or prediction

of complex experimental devices such as toroidal fusion

experiments, which couple the electromagnetic dynamics of

both trapped and passing particles, both ions and electrons,

including supra-thermal (energetic) particles. However, it

shows that one can perform numerical analysis of resonance-

driven drift-wave turbulence, as an isolated building block of

a complex system of coupled blocks (for the purpose of

improved understanding), with a great accuracy in all varia-

bles (including energy), at reasonable computing cost.

Furthermore, the present work provides some basis on

the way to numerical investigation of nonlinear phenomena

that involve strong wave-particle resonances and require a

high accuracy in velocity-space. More than four decades

ago, Dupree proposed a novel turbulent state, characterized

by the presence, not only of a collection of waves with

FIG. 2. Peak field energy (a), peak zonal flow energy (b), and peaks (mini-

mum and maximum) of radial particle flux (c), as a function of electron dis-

sipation. Inset: zoom in the low d region. For clarity, the particle flux is not

plotted when jCwj < 10�4.
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random phases, but also of small-scale structures in the

phase-space of particle distribution.20 In a limit of narrow

wave spectrum, these structures would take the form of

Bernstein-Green-Kruskal (BGK) modes,21 with a vortex

structure in phase-space. For a wide wave spectrum, though,

which is more relevant to drift-wave turbulence, there is a

competition between the formation by wave-particle reso-

nance of BGK modes, and their dispersion by the ambient

turbulence. The result of this competition is predicted, by the

analytic theory, to take the form of a smaller scale (compared

to BGK modes) random granulation of phase-space.

More recently, many authors have discussed the importance

of granulation in drift-wave turbulence and transport,3,22–27

based on various analytic models. Numerical investigation

remains to be performed. This poses a challenge for the conven-

tional gyrokinetic approach, because resolving fine-scale struc-

tures in energy space makes such simulation very costly in terms

of computing power. Attempts have been made to resolve fine-

scale velocity-space structures in local gyrokinetic simulation.2

Evidence of small-scale (Dvjj� vth) structures was found, but

the link to granulation was not discussed.

In the context of granulation, electron dissipation is an

essential ingredient: it drives the nonlinear growth of phase-

space structures,3 introduces dynamical friction associated

with anomalous transport of ion heat and particles due to ion

phase-space structures,3 and yields an important contribution

to Reynolds stress, which can drive toroidal flows.28 The

trapped-ion reduced model with simple id electron dissipa-

tion is a promising tool to bootstrap the numerical study of

granulation in drift-wave turbulence.

However, one must keep in mind the limitations of this

simple electron dissipation model. As was pointed out by

Crotinger and Dupree, the id approximation misses the effect

of spectral broadening in regimes of strong turbulence and

does not give the correct response to a coherent structure.14

Therefore, in the long term, numerical studies of granulation

will require more advanced models.

VI. CONCLUSION

The linear eigenfunction of the resonance-driven

trapped ion mode features a peak at the resonant energy,

which is stronger for finite electron dissipation compared to

no electron dissipation. In the case of finite electron dissipa-

tion, with a phase-shift dm ¼ 0:02m between the m toroidal

component of electron density and electric potential pertur-

bations, the peak is narrow, DE ¼ 0:2 T0. It requires a large

number of grid points in energy space to be resolved

accurately.

Kinetic numerical simulations of trapped-ion dynamics

were applied to investigate the peak radial particle flux.

Particle flux depends strongly on the ordering between equilib-

rium density gradient jn and equilibrium temperature gradient

jT. The particle flux was compared to a gyro-Bohm estimate,

CgB. Particle flux peaks to �CgB and �8CgB, for jn � jT and

jn � 2jT , respectively, and for large-enough electron dissipa-

tion. Furthermore, it can take negative values, �� 0:4CgB, for

small but finite electron dissipation dm � 0:005m.

Recently, a promising mean of control of heat transport

was found in the framework of TERESA.29 In addition, the

nonlinear dynamics in TERESA was found to involve strong

and fast interactions between streamers and zonal flows.30,31

In future works, we will investigate whether electron dissipa-

tion impacts the former heat transport and the latter interac-

tions. Finally, we will focus on the steady-state in flux-

driven simulations, and the presence of granulation, based on

the present model and numerical code. Therefore, this paper

also serves as a basis for future studies.
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APPENDIX A: PHASE-SHIFT

In this Appendix, we analyze the impact of electron dis-

sipation on the relation between potential perturbations and

density perturbations in TERESA
8,9 simulations. We transform

the potential and density perturbations to Fourier space in

precession angle, /̂m and d̂nm. Fig. 4 shows the amplitude

ratios jd̂nmj=j/̂mj and the phase shifts argðd̂nm=/̂mÞ, for a

time t¼ 1.0 during the linear growth. Here, we choose

d ¼ 0:01. As expected, for the most unstable modes

(m ¼ 5� 20), the amplitude ratios are nearly constant with

respect to m (and t), and the phase-shifts scale as md.

FIG. 3. Radial particle flux, as a function of radius and time, for Case 2 and

d ¼ 0:0015. Here, the flux is normalized by a gyro-Bohm estimate

CgB ¼ q�T0=ðeB0Þ@n=@r, with q0�=q� ¼ 40. Dashed vertical lines indicate

the boundary with buffer regions, near the magnetic axis w¼ 0 and the outer

region w¼ 1, where artificial dissipation dominates.
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Later, during the nonlinear saturation, the amplitude

ratios and phase-shifts become apparently random.

APPENDIX B: LINEAR ANALYSIS

In this Appendix, we analyze the frequency and growth

rate of both ion and electron roots in the presence of electron

dissipation. We can summarize the results as follows. In the

limit of zero equilibrium density gradient, the growth rate

decreases monotonously with d. On the other hand, it peaks

at d � 0:02 when the density gradient is comparable to the

temperature gradient. When the density gradient exceeds the

temperature gradient, the most unstable mode propagates in

the electron diamagnetic direction for d < 0:02. The results

are in qualitative agreement with analytic theories of

trapped-ion modes in the literature.4,10

1. Dispersion relation

Linearizing Eqs. (1)–(3), we obtain the dispersion rela-

tion D(x)¼ 0, where x ¼ x=ðmXdÞ, and

D xð Þ ¼ Cr þ iC1dm þ
2ffiffiffi
p
p
ð ffiffiffi

E
p

E� x

@Feq

@w
J2

0 Eð ÞdE: (B1)

In the latter expression, the integral is on a Landau path, and

Cr ¼ C1 þ C2ðm2q2
0q

2
0=a2 þ k2d2

bÞ: (B2)

In the d! 0 limit, Eq. (B1) is in agreement with Ref. 5.

In this case, the marginal solution is x ¼ x0, where

x0 � 3mXd=2.

Substituting the equilibrium distribution function, Eq.

(4), yields

D xð Þ ¼ Cr þ iC1dm � jTIr

� 2ffiffiffi
p
p jn þ jT x� 3

2

� �� � ð ffiffiffi
E
p

e�E

E� x
J2

0 dE;
(B3)

where

Ir ¼
2ffiffiffi
p
p
ð1

0

ffiffiffi
E
p

e�EJ2
0 Eð Þ dE: (B4)

In the limit of small density gradient (jn ! 0), the latter

dispersion relation yields a branch with positive real fre-

quency, which corresponds to propagation in the ion diamag-

netic direction. It is often called as the ion root. In the

opposite limit of small temperature gradient (jT ! 0), the

latter dispersion relation yields a root with negative real fre-

quency, which corresponds to propagation in the electron

diamagnetic direction. However, it cannot be unstable unless

electron dissipation is finite d > 0. It is often called as the

dissipative electron root. This is consistent with previous

works.10 In the reminder of this Appendix, we analyse the

impact of electron dissipation on linear frequency and

growth rate in various regimes.

2. Ion root

Let us consider a flat density profile, jn ¼ 0, and explore

the ion root of the trapped-ion-mode. The input parameters

of the model are shown as Case 1 in Table II.

The result from TERESA simulations, as well as the

numerical solution of dispersion relation Eq. (B3), is shown

in Fig. 5 against the electron dissipation rate d. Furthermore,

in Appendix C, we solve the dispersion relation Eq. (B3) for

the ion root, perturbatively, up to the second order in

ðx� x0Þ. The solution is included in Fig. 5. We observe a

quantitative agreement between analytic and numerical solu-

tion of the dispersion relation, as well as with the numerical

simulation, for both the real frequency and the growth rate.

The goal of Fig. 5 is only to provide a test for (1) our imple-

mentation of electron dissipation in TERESA, (2) our numerical

dispersion relation solver, and (3) our analytic theory.

FIG. 4. Amplitude ratios and phase-shifts as a function of the toroidal mode

number m, for Case 1, with d ¼ 0:01, at t¼ 1.

FIG. 5. Linear frequency (a) and growth rate (b) as a function of electron

dissipation, for Case 1 (flat density profile), for a given mode. The mode

numbers are arbitrarily chosen as m¼ 10 and k ¼ p. The legend is shared

between (a) and (b). “Analytic,” “Numeric,” and “Simulation” refer to Eq.

(C14), numerical solution of Eq. (B3), and TERESA initial value simulation,

respectively.
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Hereafter, let us apply the numerical solver of dispersion

relation Eq. (B3), alone, to explore the impact of electron

dissipation on the various instabilities.

Fig. 6 shows the frequency (a) and linear growth rate (b)

of modes with different wavelengths. Most strikingly, elec-

tron dissipation significantly mitigates the global instability

for values d � 0:01 (although the m¼ 1 mode is not stabi-

lized unless d > 0:37). In addition, increasing electron dissi-

pation significantly decreases the wavelength of the most

unstable mode. The impact of dissipation (for reasonable val-

ues d� 1) on the real frequency is negligible, for each

mode taken separately.

We include in Fig. 6 the linear solution for k ¼ 2p, to

illustrate the fact that modes with radial mode numbers

k=p > 1 are much more stable than modes with k ¼ p. We

also include the analytic expression Eq. (C14) to demonstrate

that it is valid for many mode numbers.

Fig. 7 (case 1) summarizes the impact of electron dis-

sipation on the most unstable mode. From this point of

view, the real frequency (of the most unstable mode) sig-

nificantly decreases with electron dissipation, even though

the frequency for a given m slightly increases. The reason

is that the mode number of the most unstable mode signifi-

cantly decreases with increasing electron dissipation. The

propagation stays in the ion diamagnetic direction (x > 0).

The growth rate decreases monotonically as dissipation

increases. The impact of dissipation on all frequency,

growth rate, and mode number is almost linear for

d < 0:01. The growth rate in the adiabatic electron limit

(d¼ 0) is c � 3xd.

3. Electron root

Let us consider a case where the equilibrium density

gradient is larger than the temperature gradient and explore

the electron root of the trapped-ion-mode. The input parame-

ters of the model are shown as Case 2 in Table II.

The numerical solution of dispersion relation Eq. (B3) is

shown in Fig. 7 against electron dissipation rate d. In this

regime, the growth rate is zero for d¼ 0, but positive for

finite d. It peaks to c � 8xd at d � 0:02. For d < 0:01, the

most unstable mode, which has a relatively high mode num-

ber m> 40, propagates in the electron diamagnetic direction

(x < 0), and growth rate is an increasing function of d. On

the contrary, for d > 0:02, the most unstable mode propa-

gates in the ion diamagnetic direction, and growth rate is a

decreasing function of d, which appears to saturate to a finite

value for large d.

Fig. 8 shows in more detail how the frequency and

growth rate depend on d, for finite but small d, not only for

the most unstable mode but also for a large range of mode

numbers. We observe that, even when the most unstable

mode is an ion root, there can be unstable electron roots as

well with comparable growth rates and lower mode numbers

FIG. 6. Linear frequency (a) and growth rate (b) as a function of the toroi-

dal mode number, for Case 1 (flat density profile). The radial mode num-

ber is k ¼ p except for one curve for k ¼ 2p. The legend is shared

between (a) and (b). Thin curves correspond to the analytic expression

Eq. (C14).

FIG. 7. Linear frequency (a), growth rate (b), and mode number (c) of the

most unstable mode, as a function of electron dissipation.
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(e.g., for d ¼ 0:005). Conversely, dominant electron roots

can coexist with ion roots with comparable growth rates

(e.g., for d ¼ 0:02).

4. Competition between ion and electron roots

Let us consider equilibrium profiles with comparable

gradients to study the competition between ion and electron

roots of the trapped-ion-mode. We choose jn ¼ jT ¼ 0:15.

The input parameters of the model are shown as Case 3 in

Table II.

The numerical solution of dispersion relation Eq. (B3) is

shown in Fig. 7 against electron dissipation rate d. In this

regime, the growth rate is finite (c � 2xd � 0:2x) for d¼ 0.

It peaks to c � 3xd at d � 0:02. Propagation is in the ion

diamagnetic direction. Dependence of the growth rate on

electron dissipation is relatively weak.

APPENDIX C: ANALYTIC EXPRESSION OF LINEAR
FREQUENCY AND GROWTH RATE

In this Appendix, we derive an analytic, explicit expres-

sion for the linear frequency and growth rate of the ion root

(ReðxÞ > 0), from the dispersion relation Eq. (B3), in the

limit of small growth rate c=x� 1.

As a first step for the sake of clarity, we approximate the

gyroaveraging operator by J0 ¼ 1. This is valid in the limit

of small banana width db � 1 (and small gyroradius). With

J0 ¼ 1, Ir¼ 1 and the dispersion relation become

D xð Þ ¼ Cr þ iC1dm � jT � jn þ jT x� 3

2

� �� �
Ii; (C1)

where

Ii ¼
2ffiffiffi
p
p
ð ffiffiffi

E
p

e�E

E� x
dE: (C2)

Since we are interested in linearly unstable solutions, x
has a positive imaginary part, and we can express Ii as

Ii

2
¼ 1� e�x

ffiffiffiffiffiffiffiffiffi
�px
p

� 2
ffiffiffi
x
p

W
ffiffiffi
x
p	 


; (C3)

where W is the Dawson integral32,33

W zð Þ ¼
1

2

ffiffiffi
p
p

e�z2

erfi zð Þ: (C4)

Since the marginal solution in the d¼ 0 limit is

x ¼ 3mxd=2,5 we substitute x by dx ¼ ðx� 3=2Þmxd . The

dispersion relation is then developed to the second order in

dx. This yields

D x½ � ¼ Cr þ iC1dm � jT � 2þ að Þjn

� 2þ að ÞjT � 2þ 2

3
a

� �
jn

� �
dx
m

þ 2þ 2

3
a

� �
jT �

2

3
þ 1

9
a

� �
jn

" #
dx2

m2

þO dx3½ �;

(C5)

where a ¼ ½i� erfið
ffiffiffiffiffiffiffiffi
3=2

p
Þ�
ffiffiffiffiffiffi
6p
p

e�3=2.

Solving D½x� ¼ 0 for dx yields two solutions. The root

that is consistent with our assumptions is

dx
m
¼ 3 2þ að ÞjT � 2 3þ að Þjn þ

ffiffiffiffi
D
p

4 3þ að ÞjT � 4þ 2a=3ð Þjn
; (C6)

where

D ¼ ½3ð2þ aÞjT � 2ð3þ aÞjn�2

�4½6ð3þ aÞjT � ð6þ aÞjn�
Cr þ iC1dm � jT � ð2þ aÞjn�:½ (C7)

The real frequency and growth rate are then obtained as x ¼
3mxd=2þ ReðdxÞ and c ¼ ImðdxÞ. They are shown in Fig.

5 (labeled “Analytic, J0 ¼ 1”).

We now consider a more accurate approximation of J0
6

J0 Eð Þ � 1� m2q2
0

4
E

� �
1� k2d2

b

4
E

� �
; (C8)

where we have taken q0=a ¼ 1 to lighten the equations. This

factor can be recovered by the substitution q0! q0q0=a. We

take jn ¼ 0 for the sake of clarity and concision. We obtain

the dispersion relation

D x½ � ¼ Cr þ iC1dm � gmkjT � 2þ að ÞgmgkjT
dx
m

þ 2þ 2

3
a

� �
gmgkb 1þ a

2

� �" #
jT

dx2

m2
þ O dx3½ �:

(C9)

Here, we have defined

FIG. 8. Linear frequency (a) and growth rate (b) as a function of the toroidal

mode number, for Case 2 (higher density gradient). The radial mode number

is k ¼ p.
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gm ¼ 1� 3

4
mq0ð Þ2 þ

9

64
mq0ð Þ4; (C10)

gk ¼ 1� 3

4
kdbð Þ2 þ 9

64
kdbð Þ4; (C11)

b ¼ mq0ð Þ2 �
3

8
mq0ð Þ4

� �
gk þ kdbð Þ2 � 3

8
kdbð Þ4

� �
gm;

(C12)

and

gmk ¼ 1� 3

4
mq0ð Þ2 þ

15

64
mq0ð Þ4

� �

�3 kdbð Þ2 1

4
� 5

16
mq0ð Þ2 þ

35

256
mq0ð Þ4

� �

þ15 kdbð Þ4 1

64
� 7

256
mq0ð Þ2 þ

63

4096
mq0ð Þ4

� �
:

(C13)

The root that is consistent with our assumptions is

dx
m
¼ 3gmgk 2þ að ÞjT þ

ffiffiffiffi
D
p

4gmgk 3þ að Þ þ 3b 2þ að Þ
	 �

jT

� ; (C14)

where

D ¼ ½3ð2þ aÞgkgmjT �2

�4½18bð2þ aÞ þ 6gkgmð3þ aÞjT �
Cr þ iC1dm � gmkjT �:½ (C15)

Applications are shown in Fig. 5 (labeled “Analytic”)

and Fig. 6.

It can be easily checked that substituting jn ¼ 0 into Eq.

(C6) yields the same expression as substituting gm ¼ gk ¼
gmk ¼ 1 and b¼ 0 (the J0 ¼ 1 limit) into Eq. (C14).

The advantage of such analytic expressions, compared

to solving the dispersion relation numerically, is that it sig-

nificantly speeds up the exploration of the space of input

parameters.
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