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ABSTRACT

We study the evolution of one million test particles in a turbulent plasma simulation, using the gyrokinetic code Trapped Element
REduction in Semi-Lagrangian Approach (TERESA), as a method to get insights into the type of transport governing the plasma. TERESA
(Trapped Element REduction in Semi-Lagrangian Approach) is a collisionless global 4D code which treats the trapped particles kinetically,
while the passing particles are considered adiabatic. The Vlasov-Poisson system of equations is averaged over the cyclotron and the trapped
particle’s bounce motion, and thus, the model focuses on slow phenomena of the order of the toroidal precession motion of the banana
orbits. We initialize the test particles, which are de facto “test banana-centers,” at a time of the simulation when the plasma is turbulent. We
impose an initial temperature and density gradients, and only the Trapped Ion Mode (TIM) instability can develop in this system. We then
calculate the Mean Squared Displacement of the test particles as a function of time in order to obtain a random walk diffusion coefficient.
We observe that the radial diffusion of the test particles depends on their toroidal precession kinetic energy (E), in such a way that the trans-
port of particles is dominated by a strong, relatively narrow peak at the resonant energies. A radial particle diffusion flux is then calculated
and compared to the total radial particle flux accounting for all the transport processes such as diffusion and advection which is obtained
directly from the TERESA code. We can thus compare the diffusive contribution to the particle flux against the nondiffusive contributions.
The results show that the total flux is essentially diffusive which is consistent with our simulation setup aiming for “global turbulence.” Both
fluxes present a peak around a resonance energy ER � 1:74Ti between the TIM and the particles. Both thermal and high-energy particles do
not contribute significantly to radial transport.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5115231

I. INTRODUCTION

Understanding, predicting, and mitigating turbulent transport in
tokamaks are some of the main challenges to overcome in order to
achieve commercially viable fusion reactors.

Turbulent transport processes include diffusion,16,23,27,35 subdif-
fusion,9,37,38 or superdiffusion42 appearing in fusion scenarios such as
predisruptive phases, toroidicity-induced Alfv�en eigenmode (TAE)
transport or saturated tearing modes, convection,1,2,11,27 and ballistic
events such as avalanches.11,26,36,39,41,43

Although there is no global theory of turbulence, tremendous
progress on this subject has been made in the last few decades, thanks
to a combination of analytical, experimental, and numerical research.17

Recently, the field of High Performance Computing (HPC) combined
with advances in gyrokinetic theory3 opened new horizons in the
domain of numerical simulations of turbulence,18 allowing for a
deeper understanding of transport. The gyrokinetic framework allows
us to simulate high-temperature plasma behavior, usually in a 5
dimensional space, by averaging out the fast cyclotron motion of the

charged particles. Simulation codes based on this model nonexhaus-
tively include GYSELA,8,12,21,22,41 GENE,13,20,28 GKW,34 ELMFIRE,24

ORB5,29 GT5D,25,26 and GYRO.4,5

It is possible to further reduce the model by averaging out, in
addition to the cyclotron motion, the trapped particle bounce (or
banana) motion and considering adiabatic passing particles with
kinetic trapped ions (from zero to suprathermal, although nonrelativis-
tic, energies), thus focusing on slow phenomena on a time scale of the
toroidal precession of trapped particles with thermal velocity, which is
around 10–2 s. In this work, we use the trapped element reduction in
semi-Lagrangian approach (TERESA) code6,7,10,14,19,31,32,40 which is
based on this reduced gyrokinetic model and which is less computa-
tionally intensive than standard gyrokinetic codes. This axisymmetric,
electrostatic code solves the Vlasov equation coupled to the quasineu-
trality constraint, in a 4 dimensional space: 2 spatial variables (a, w)
and 2 adiabatic invariants j and E. a ¼ u� qh is the precession angle
with u the toroidal angle, h the poloidal angle, and q the safety factor,
taken independent of the radius. w ¼ w0 � cr2 is the poloidal
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magnetic flux with r the radial coordinate, c a constant, and w0 a shift
so that w¼ 0 is toward the edge. j2 ¼ sin2ðh02 Þ is the trapping parame-
ter with h0 the poloidal angle where the trapped particle parallel veloc-
ity changes the sign, l the magnetic moment, and E ¼ 1

2mv2k þ lB the
kinetic energy. Although the code allows the simulation of kinetic
trapped ions and electrons,15 in this work, we focus on kinetic trapped
ions and consider the trapped electrons as a neutralizing background.
The turbulence obtained in our simulation is driven by Trapped Ion
Modes (TIMs), and we expect that mode-particle resonance plays an
important role in the transport of particles and energy. The TERESA
code allows for numerical investigation of fundamental phenomena
and is not intended to give quantitative predictions for tokamaks.

Although this kind of code solves the distribution function f and
the electric potential /, it does not yield individual particle trajectories.
Particles, momentum, and energy fluxes can be obtained from f and /,
but discriminating diffusive and convective processes typically requires
convoluted methods such as dedicated dynamical synthetic experi-
ments. Investigating the particle trajectories in the turbulent plasma
would lead to have better insights into diverse phenomena occurring
in tokamaks such as diffusion, hyper- or subdiffusion,45 advection, bal-
listic motions, and the trapping of particles in potential wells. Indeed,
the analysis can be done locally in space, within a short timespan and
without ambiguity.

In this work, in order to have access to the particle trajectories,
we add test particles to TERESA. Test particles are particles advected
by the electrostatic field, but they do not affect it. They can thus be
used as markers in the turbulent plasma, representing exactly the
motion of a single particle belonging to f. The test particle trajectories
are computed directly in the TERESA code, thus allowing for the same
order of accuracy as solving f and / directly.

The present work aims at distinguishing the radial diffusive flux
of the test particles, which are de facto “banana-centers,” from the total
particle flux. We initialize 106 test particles in a TIM-driven, turbulent,
core plasma and investigate their time-evolution and their statistical
properties.

In Sec. IIA, we describe briefly the bounce-averaged gyrokinetic
model, and then, in Sec. II B, we explain our implementation of test par-
ticles in TERESA. In Sec. III, we detail our simulation parameters and
the initialization of the test particles and give information on the turbu-
lent plasma such as the time evolution of the dominant modes, the typi-
cal mode spectrum, and the absence of a large scale plasma structure.
Then, in Sec. IVA, we analyze the time evolution of the test particle
Mean Squared Displacement (MSD) in order to calculate a radial ran-
dom walk diffusion coefficient in velocity space. With this diffusion coef-
ficient, we estimate a radial diffusive flux in velocity space for the test
particles in Sec. IVB, and we compare it to the total radial particle flux
obtained from f and/. In Sec. V, we draw our conclusions.

II. TEST PARTICLE IMPLEMENTATION IN THE TERESA
CODE
A. A bounce averaged gyrokinetic model

The TERESA code6,7,10,14,19,32,40 is based on a reduced electro-
static gyrokinetic model focusing on trapped particles, where the
cyclotron and bounce motions are averaged out. TERESA does not
aim to quantitatively predict the transport in the existing or future
tokamaks. Instead, its purpose is to investigate the general trends and
fundamental ingredients of turbulent transport in a qualitative way. In

this paper, we focus on trapped hydrogen ions. The passing particles
respond adiabatically to the electric potential, while the trapped ion
motion is described kinetically using the Vlasov equation

@f
@t
� H; f½ �a;ew ¼ 0: (1)

The trapped electrons are assumed as a neutralizing background.
Equation (1) is coupled to the quasineutrality constraint

C1 /þ F�1 idm/̂m

� �h i
� C2

�D/ ¼ 2ffiffiffi
p
p
ð1
0
J 0ðEÞf

ffiffiffi
E
p

dE � 1; (2)

which comes from the fact that the fluctuation densities of the ions
(passingþ trapped) are locally equal to the fluctuation densities of the
electrons. Here, we give a brief explanation of the model. More details
on each term, as well as the normalization, can be found in Refs. 31
and 32. f is the ion “banana-center” (charged þ e) distribution func-
tion. H ¼ Eð1þ eXdwÞ þ e��/ is the Hamiltonian of an ion banana-
center, where Xd is linked to the precession frequency and
��/ða;w; j; EÞ is the gyrobounce averaged electric potential felt by the
banana center. ½H; f �a;ew are the Poisson brackets in the angle action
(a, ew). A position in phase space is determined by a the toroidal pre-
cession angle, w the poloidal magnetic flux which serves as a radial
coordinate, and two adiabatic invariants which are fixed parameters: E
the particle kinetic energy present in the toroidal precession motion
and j the pitch angle. All quantities in the TERESA code are dimen-
sionless and are normalized as follows: w ¼ W=Lw, where w is dimen-
sionless, W is the physical magnetic flux, and Lw is the radial length
of the simulation box in magnetic flux units, E is normalized to ion
temperature Ti, and / ¼ R0eU=aTi, where U is the physical electric
potential and a and R0 are the minor and major tokamak radii,
respectively.

The quasineutrality equation yields the electric potential /(a,w).
The term C1/ in the LHS accounts for the adiabatic response of the
passing particles to /. Although there is no collision in the model
(thus no collisional transfer between passing and trapped particles),
the term dm models the effects of electron-ion (every particles, trapped
and passing) collisions as a phase shift between / and the electron
density.31 F�1 is the inverse Fourier transform, /̂m is the Fourier
transform of / in the a direction, and m is the a-mode label number.
�D/ is the polarization term accounting for the difference between the
true density and the bounce-averaged density. J 0 is the averaging
operator, and C1 and C2 (the inverse aspect ratio) are the two fixed
parameters. The RHS accounts for the difference between the trapped
ions and trapped electron densities.

B. Test particles in TERESA

Test particles allow the study of, local or global, diffusion, advec-
tion, ballistic motion, trapped particles in potential wells. In order to
obtain insights into the type of transport processes occurring in the
simulation, we need to determine the banana-center trajectories. This
information is not obtained by solving the system for f, and therefore,
we will use the test particles, which are charged particles advected by
the electric potential without affecting it and can thus be used as
“markers” in the plasma.

There are multiple approaches to use test particles, and the main
ones are as follows: (1) determining an electric potential map from
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analytical methods and letting the test particles evolve in it,30 or (2)
obtaining the electric potential map either from a kinetic simulation
(or experimental measurements33,44) and determining the test particle
trajectories in post processing, or (3) solving the test particle trajecto-
ries directly in the kinetic simulation.

Method 1 offers the main advantage that it does not require large
computational power but it relies on a predetermined analytical
description of the electric potential configuration.

Method 2 is usually more computationally intensive as it gener-
ally requires a nonlinear kinetic simulation. One downside is that the
test particle trajectories which are solved in post processing are not
solved at the same order of precision than the simulation: Dt � dt,
where Dt is the kinetic simulation time step and dt the post processed
test particle trajectory time step. Although it is in principle possible to
use method 2 with Dt ¼ dt and obtain method 3, we distinguish
method 2 from method 3 because it would require the saving of the
potential map at each dt and would thus be prohibitively expensive in
terms of numerical storage.

In this work, we will use method 3 which has the advantage of giv-
ing the test particle trajectories with the same order of precision as the
numerical scheme of the TERESA simulation (Dt ¼ dt �10�6X�1d )
but with the downside of being more expensive in terms of computa-
tional time and numerical storage. With one million test particles, the
TERESA simulation usually takes twice as much time than without test
particles.

The test particle trajectories follow the Vlasov characteristics, and
as we have df

dt ¼ 0 over particle trajectories, the test particles follow the
contours of constant f in time. The test particle dynamics is described
by the characteristic equations:

_a ¼ 1
e
@H
@w
¼ EXd þ

@ ��/
@w
ða;w; j; EÞ; (3)

and

_w ¼ � 1
e
@H
@a
¼ � @

��/
@a
ða;w; j;EÞ: (4)

These positions are solved at each time step using the RK4 method,
and they depend on the energy parameter E. The test particle energy E
conservation throughout the simulation is at the same order of accu-
racy than other quantities in TERESA. At each time step of the simula-
tion, TERESA thus solves f, /, and the test particle positions in phase
space.

III. SIMULATION CONFIGURATION

The bounce-averaged gyrokinetic code TERESA allows us to sim-
ulate a fusion plasma core on the precession time scale, in a qualitative
way, and at the same time follow test particle trajectories in this
plasma. We use a uniform grid in phase space: Nw points in
w 2 ½0; 1�, where w¼ 1 is the center of a poloidal section and w ¼ 0 is
toward the edge (but still fulfilling core plasma conditions) and Na

points in the toroidal precession angle a 2 ½0; 2p½. The number of
points is Na � Nw ¼ 2045� 1025. For the energy E, we choose a
non-uniform grid spacing with the introduction of a new parameter
V ¼

ffiffiffi
E
p

, with NV ¼ 96 points. The range E 2 ½0; 20� is chosen to
allow good convergence of simulation results. For the j adiabatic

invariant, we only use a single value which forces the trapped particles
to be deeply trapped. We recall the grid configuration in Table I.

For boundary conditions, we use thermal baths on w ¼ 0 and w
¼ 1, and thus, we can impose an initial temperature gradient length
jT ¼ 0:15 and an initial density gradient length jn ¼ 0:05. We
also impose the electric potential to be 0 at the edges. Imposing such
constraints usually creates numerical error when approaching the
edges, and thus, we create an artificial diffusion, “buffers,” between
w 2 ½0; 0:15� and w 2 ½0:85; 1�.32 The ion Larmor radius is qi ¼ 0:001
and the ion banana width is dbi ¼ 0:01 which are given in units of w,
at the thermal velocity, using the approximation of constant orbits.
The initial electrostatic potential is a sum of sines both in a and w with
random phases, and we choose the equilibrium ion distribution func-
tion feq as locally Maxwellian (exponential in E)

feqðw; EÞ ¼ e�E 1þ wðjTðE � 3=2Þ þ jnÞ½ �: (5)

We recall the input parameters in Table II.
With the goal of studying the test particle diffusion in a typical

core plasma, we do not want zonal flows or streamers to be dominant
because they would drastically enhance or reduce the radial transport
of particles, and thus, it would not be a pertinent case to study the
radial transport of test particles. We want a simulation with a global
turbulence at the time of the study, where global means that there is
no large electric potential structure either in w or in a. Figure 1 shows
the time evolution of the 5 modes along with the 0th mode
(m ¼ 0; 2; 4; 6; 7; 9) in the a direction, in semilog. The mode magni-
tudes grow exponentially from t¼ 0 to t � 2, where the time t is nor-
malized to the inverse precession frequency of particles with thermal
velocity X�1d . Then, the modes reach the saturation level at t � 2, and
nonlinear interactions are dominant. This is the turbulent phase where
the modes are Trapped Ion Modes (TIMs). The 0th mode is not domi-
nant throughout the simulation.

TABLE I. Grid used for our simulation. a and w are the phase-space variables, while
j and E (or V) are parameters.

Grid Number of grid points Value

a Na ¼ 2045 a 2 ½0; 2p½
w Nw ¼ 1025 w 2 ½0; 1�
j Nj ¼ 1 j ¼ 0
E,V NE orNV ¼ 96 E 2 ½0; 20�

TABLE II. Input parameters.

Quantity Value

Ion Larmor radius qi ¼ 0.001
Ion banana width dbi ¼ 0.01
Initial temperature gradient jT ¼ 0.15
Initial density gradient jn ¼ 0.05
Trapped particle precession frequency Xd ¼ 1
C1 C1 ¼ 0.1
C2 C2 ¼ 0.1
Electron dissipation31 dm ¼ 0:02
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A global turbulence would not be dominated by large scale
modes such as kamLa � 1 and kwn

Lw � 1, where kam and kwn
are the

mth and nth wavenumbers of a / wave in ða;wÞ directions and
La ¼ 2p and Lw ¼ 1 are the sizes of the box in a and w. Moreover, we
would have a bulk of most intense a-modes (not the one dominant
mode over the others) so that Dm � �m, where Dm is the mode range
of the bulk of most intense a-modes and �m the mean mode of this
bulk. The autocorrelation time of the a-modes is sa � 1. The spec-
trum of a-modes averaged between t¼ 6 and t¼ 7 is shown in Fig. 2,
and we can see that the mode range of the bulk of most intense a-
modes is approximately Dm � 10, and the mean mode of this bulk of
modes is �m � 10, so we do not have one very dominant mode but
rather a collection of dominant modes of about the same amplitude.

Therefore, we choose to study the test particle diffusion at time
t¼ 6. At this time, we have a ratio e/=T � 0:01� 0:03, Fig. 3, which
is typical in core fusion plasma.

We choose to initialize the test particles at time t¼ 6, with a
Gaussian distribution in w centered in w ¼ 0:5 and with a standard

deviation Dw ¼ 0:022, in order to minimize the sensitivity to the
radial variations of turbulence. In the a direction, the test particles are
distributed randomly. They have a fixed E. Figure 4 shows the test par-
ticle distribution function in w, for E¼ 1.74, from initialization at
t¼ 6 to t¼ 6.5. Section IV shows that the highest rate of test particle
radial transport is observed for E¼ 1.74. For each E, we use 106 test
particles: 1000� 1000 in the w and a directions.

IV. TEST PARTICLE DYNAMICS IN A TURBULENT
PLASMA SIMULATION

In this section, we aim at developing a robust method for dissoci-
ating radial diffusion and radial convection of the test particles. We
first study the time-evolution of the test particle Mean Squared
Displacement (MSD) in the radial direction w for each E as they evolve
in a turbulent plasma simulation. It allows us to estimate the turbulent
radial diffusion coefficient in velocity space. We then find the radial

FIG. 1. Time-evolution of 5 a-modes, along with the 0th mode, in semilog at
w ¼ 0:5.

FIG. 2. Log-log spectrum of the a-modes at w ¼ 0:5 and averaged over t 2 ½6; 7�.

FIG. 3. Electric potential / map at t¼ 6.

FIG. 4. Snapshot of the test particle distribution function from Gaussian initialization
at t ¼ 6 to t ¼ 6:5, for E¼ 1.74.
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diffusive flux of the test particles, and we compare it to the total radial
particle flux accounting for all the transport processes.

A. Estimation of a random walk radial diffusion
coefficient in velocity space for the test particles

We let the test particles evolve in the turbulent simulation start-
ing from time t0 ¼ 6. At each time step of the simulation, TERESA
calculates the MSD of the test particles in the radial direction, where
the average is over all the test particles: hðwðtÞ � wðt0ÞÞ2i, for
each energy E. Later, we will see that around E � 1:74, there is a reso-
nance between trapped ions and TIM, and therefore, we plot the

time-evolution of this MSD for E¼ 0, E¼ 0.8, E¼ 1.74, E¼ 2.71, and
E¼ 3.2, respectively, in Figs. 5(a), 5(b), 6(a), 6(b), and 7. For each E,
we can distinguish different phenomena in time for the MSD. When
the MSD grows linearly in time, we superpose the slope in red to the
plot, and we will be able to calculate the diffusion coefficient.

In the general case, we expect the MSD to have 4 different phases
at different time and space scales:

1. Phase 1: A first, rapid (�0:1X�1d ) phase of local convection where
the test particles reorganize themselves inside the local potential
structure where they have been initialized in, typically on a space
scale of 10�2 in units of w.

FIG. 5. Time evolution of the test particle MSD for E ¼ 0 [5(a)] and E¼ 0.8 [5(b)]. In red is the linear fit of the MSD in phase 3 (diffusive phase). In black is the power law fit
for all the simulation time, with~t ¼ t � t0.

FIG. 6. Time evolution of the test particle MSD for E¼ 1.74 [6(a)] and E¼ 2.71 [6(b)]. In red is the linear fit of the MSD in phase 3 (diffusive phase). In black is the power law
fit for all the simulation time, with~t ¼ t � t0.
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2. Phase 2: A phase of fast-diffusion (�0:2X�1d ), on a space scale of
10�2 � 10�1 in units of w.

3. Phase 3: In this phase, the evolution of the MSD is somewhat com-
plex, with strong fluctuations on a �0:1X�1d timescale, indicating
that the particle motion is not a simple combination of diffusion
and convection on this timescale. However, on a timescale �X�1d , of
the order of the turbulent autocorrelation time, the MSD grows
roughly linearly in time, on the space scale of the simulation
box. Therefore, transport may be modeled by a simple diffusive pro-
cess on this longer timescale. We thus make a linear fit on phase 3,
which we superpose in red to the plot, to find the diffusive
coefficient.

4. Phase 4: A phase of saturation due to nonlocal effects and boundary
conditions, where the test particles have explored the whole simula-
tion box in w and the MSD reaches a plateau at MSD � 0:08.

For E¼ 0, see Fig. 5(a), the trapped particles have no kinetic
energy in the a direction. Phase 1 is from t¼ 6 to t � 6:1, where the
MSD grows quadratically with time until MSD � 10�3. Phase 2
appears from t � 6:1 to t � 6:3 where the MSD grows to MSD
� 2:3� 10�3. Phase 3 is from t � 6:3 to the end of the simulation.
Phase 4 does not appear on this figure, but the MSD would reach the
saturation phase if the total simulation time were approximately one
order of magnitude longer.

E¼ 0.8, Fig. 5(b), is an intermediary case. Phase 1 is present from
t ¼ 6 to t � 6:1, where the MSD grows quadratically with time until
MSD � 10�4. Phase 2 appears from t � 6:1 to t � 6:7 where the
MSD grows to MSD� 1:5� 10�2. Phase 3 is from t � 6:3 to the end
of the simulation and is where we fit linearly the MSD. Phase 4 is again
not present, for the same reason as before.

For E¼ 1.74, see Fig. 6(a), the test particles resonate with the
TIM. Phase 1 is from t � 6 to t � 6:4. Phase 2 does not appear as the
MSD transitions directly to phase 3. Phase 3 is from t � 6:4 to t � 6:8
where the MSD grows, linearly in time, from MSD � 0:02 to MSD
� 0:06, as the test particles diffuse rapidly in w. Phase 4 appears from
t � 6:8 to the end of the simulation, where the test particles have
explored the whole simulation box in w and the MSD reaches a pla-
teau at MSD� 0:08.

At E¼ 2.7, Fig. 6(b), the test particles are above the resonance
energy and have a higher _a than the precedent cases. Phase 1 is from
t � 6 to t � 6:1. Phase 2 does not appear as the MSD directly enters
phase 3 from t � 6:1 to t � 8, with the MSD growing linearly from
MSD � 10�3 to MSD � 0:04. Then, the MSD enters phase 4 as the
test particles are subject to boundary effects, finally reaching a plateau
at MSD� 0:08 at the end of the simulation.

For E¼ 3.2, Fig. 7, the test particles first explore the potential
structure they were initialized in, in phase 1, from t ¼ 6 to t � 6:1.
Then, the MSD directly enters phase 3 as the test particles follow
Brownian motion and the MSD grows linearly, until the end of the
simulation. Phase 4 does not appear during the simulation time
although the saturation would appear with a longer simulation
(around t � 20� 30).

From the MSD at each E, we calculate the slope of the MSD in
phase 3, and thus, we can estimate a radial random walk diffusion
coefficient of the test particles in E space (or velocity space), Fig. 8.

The diffusion coefficient has a peak (DRW � 5:2� 10�2) around
the resonance energy ER � 1:74 because at this E, the test particles
tend to move simultaneously with the electric potential and thus dif-
fuse in the radial direction much faster than at other E.

For high E, the test particles have a high velocity _a compared to
the evolution of the electric potential and tend to perceive only an
average of / along their trajectories, and thus, their radial diffusion
coefficient is much smaller.

To confirm that the diffusion coefficient calculated from the
MSD is not spuriously influenced by convection, we analyze the stan-
dard deviation of the w-distribution of test particles, which cannot be
influenced by convection. We find that there is no significant differ-
ence between the time-evolution of the variance and that of the MSD,
except for a constant shift due to a finite initial standard deviation,
which has no impact on the slope. Therefore, this second method of
analysis, which unambiguously discriminate convection and diffusion,
confirms the results of the first method. This agreement indicates that,
on a time scale of the order of the turbulence autocorrelation time,
transport is predominantly diffusive in this simulation.

FIG. 7. Time evolution of the test particle MSD for E ¼ 3:2. In red is the linear fit of
the MSD in phase 3.

FIG. 8. Random walk radial diffusion coefficient in velocity space evaluated from
the motion of the test particles.
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We have interpreted the results in terms of a purely diffusive
phase, in general preceded by a first phase of local convection and a
second phase of fast-diffusion, followed by a phase of saturation due to
the nonlocal effects and boundary conditions. However, the same
results can also be interpreted in terms of a generalized hðwðtÞ
�wðt0ÞÞ2i ¼ Dðt � t0Þp law; where p < 1 and p > 1 correspond to
subdiffusion and superdiffusion. Figures 5 and 6 include fits to this
generalized law. These fits indicate that transport is subdiffusive for
particles outside the resonance energy and below high energies, Figs. 5
and 6(b), is superdiffusive for particles around the resonance energy,
Fig. 6(a), and diffusive for high energies, Fig. 7.

Although we provide this alternative interpretation, the following
analysis focuses on our first interpretation of a purely diffusive phase.

B. Comparison between the radial diffusion flux of the
test particles and the total radial particle flux, in
velocity space

From the random walk diffusion coefficient, we can estimate a
radial diffusive flux for the test particles as

CDRW ¼ �DRW
@hf ia
@w

� �
w2 0:4;0:6½ �

; (6)

where we averaged the radial gradient of hf ia overw 2 ½0:4; 0:6� in
order to smooth out the local high variations of f in the radial direc-
tion. The diffusive flux CDRW is equal to the particle flux if transport is
purely diffusive.

In Fig. 9, we compare the diffusive flux in blue to the total flux in
red obtained directly from the TERESA code as

CTotal ¼ h _wf ia; (7)

which includes all radial transport processes such as diffusion or
advection and which we average over w 2 ½0:4; 0:6� and over an auto-
correlation time t 2 ½6; 7�. We find that the radial particle transport is
dominated by the resonant particle around the energy ER � 1:74

where the trapped ions resonate with the TIM. As the peaks of the
total flux and the diffusive flux are of the same magnitude, we can say
that the transport of resonant particles is exclusively diffusive, follow-
ing a random walk process, and moreover that the whole radial parti-
cle transport is dominated by diffusive processes. This is coherent with
our choice of global turbulence as we chose to favor a turbulence
driven by a bulk of the dominant TIM, with a nondominant large
potential structure. Both flux peaks are negative (directed toward the

edges) which is coherent with the gradient h@hf ia@w iw2½0:4;0:6� being posi-

tive at E ¼ ER, recalling that w ¼ 1 is toward the core and w ¼ 0 is
toward the edge.

For high E and thus high _a, the particle radial transport tends
to be negligible, and thus, the two fluxes tend to 0, as explained in
Sec. IVA.

For E< 1, the gradient h@hf ia
@w iw2½0:4;0:6� is negative, and thus, the

diffusive flux is slightly positive (directed toward the core). The total
flux is of the same sign as the diffusive flux, and thus, they are in the
same direction. Between E ¼ 0 and E � 0:5, the total flux is a little
less intense than the diffusive flux, indicating that the total flux may
have a significant nondiffusive component directed toward the edge,
although the discrepancy may be due to the uncertainty in measuring
the slope of the MSD. Between E � 0:5 and E � 1, the total flux is
more intense than the diffusive flux, indicating that the total flux may
have a nondiffusive component in the same direction than the diffu-
sive flux, i.e., directed toward the core. The use of test particles thus
allows us to estimate the diffusive part of the flux in the total particle
flux.

V. CONCLUSION

We added a test particle module to the reduced bounce-averaged
gyrokinetic code TERESA which is focused on investigating the low
frequency phenomena of the order of the trapped particles’ toroidal
precession frequency. The code can henceforth solve, in addition to
the distribution function f and the electric potential /, the individual
trajectories of millions of test particles. The test particle positions in
phase space are computed directly in the code, thus allowing the same
order of accuracy than the TERESA numerical scheme. Test particles
are particles which respond to the electrostatic field without contribut-
ing to it. The addition of test particles in our code gives us access to
information which was not available before with only f and/. It
allows us to have better insights into the transport phenomena such as
diffusion, advection, or ballistic motions.

In this first work, using test particles in TERESA, we aimed at
separating the contribution of the diffusive process of the particles in
the radial direction, from the total radial transport. To proceed, we ini-
tialized one million test particles at t¼ 6, in a turbulent core plasma, in
the center of our box (w ¼ 0:5) and let them evolve in the electrostatic
potential. The turbulence is TIM-driven, and there are no dominant
zonal flows, streamers, or large potential structures which would dras-
tically impact the transport. Instead, the a-mode spectrum presents a
bulk of most intense modes ranging from m � 1 tom � 10, and the
ratio e/=T � 0:01� 0:03 is typical of core turbulence.

We then calculated the time evolution of the test particle Mean
Squared Displacement in the radial (w) direction, for each E 2 ½0; 20�,
and observed that the MSD tends to first have a rapid growth, indicat-
ing that the test particles reorganize themselves inside the potential
structure where they were initialized in. Then, the test particle MSD

FIG. 9. Radial diffusion flux of the test particles (in blue) in velocity space, com-
pared to the total flux given by the gyrokinetic simulation in red.
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grows linearly, indicating a radial diffusion process toward the edges
of the box until the test particles start to undergo boundary effects. At
ER ¼ 1:74 which is approximate when the particles resonate with the
TIM, the MSD becomes constant in time at MSD �0:08, indicating
that the test particles fully explored the box in the radial direction. At
the resonant energy, the particles tend to “see” the constant potential
structure and thus explore the simulation box faster than at nonreso-
nant energies.

With the MSD obtained for each E, we calculated a radial ran-
dom walk diffusion coefficient, which presents a peak around the reso-
nant energy ER � 1:74.

Then, we estimated the radial diffusive flux of the particles which
is the flux if there was only a diffusion process. We compared it to the
total flux obtained directly from the TERESA simulation accounting
all the radial transport processes. We found that the radial particle
transport is clearly dominated by the resonant particles, as both fluxes
present a peak around ER � 1:74. Both peaks are negative and of the
same intensity, indicating that the radial transport of resonant particles
is exclusively a diffusive process toward the edge. It is coherent with
our choice of global turbulence. The high energy particle radial trans-
port tends to be negligible. Below the resonance, for E < 1, the gradi-
ent of f is negative, and the diffusive flux is oriented toward the core.
Between E ¼ 0 andE � 0:5, there might be a nondiffusive process,
directed toward the edge so that the total flux is lower than the diffu-
sive flux. Between E � 0:5 and E � 1, a nondiffusive process appears
to induce a flux directed toward the edge, so that the total flux is more
intense than the diffusive flux.

This analysis was made in a broad spectrum (Dm � �m) turbu-
lence. In a peaked (Dm� �m) spectrum turbulence, large radial struc-
tures (streamerlike) appear and the test particle transport is enhanced,
so that CDRW is one order of magnitude smaller than CTotal and the
two fluxes are not peaked at a resonance energy anymore.
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45G. M. Zaslavsky and G. Moiseevič Zaslavskij, Hamiltonian Chaos and
Fractional Dynamics (Oxford University Press on Demand, 2005).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 102301 (2019); doi: 10.1063/1.5115231 26, 102301-9

Published under license by AIP Publishing

https://doi.org/10.1088/0029-5515/49/6/065029
https://doi.org/10.1103/PhysRevLett.74.4436
https://doi.org/10.1063/1.874014
https://doi.org/10.1016/j.cpc.2007.04.006
https://doi.org/10.1063/1.873926
https://doi.org/10.1063/1.4974269
https://doi.org/10.1063/1.5057420
https://doi.org/10.1016/j.surfcoat.2013.11.050
https://doi.org/10.1016/j.surfcoat.2013.11.050
https://doi.org/10.1016/j.cpc.2009.07.001
https://doi.org/10.1103/PhysRevLett.40.38
https://doi.org/10.1088/0741-3335/57/12/123002
https://doi.org/10.1103/PhysRevLett.101.205002
https://doi.org/10.1088/0741-3335/53/7/074018
https://doi.org/10.1088/0029-5515/51/10/103023
https://doi.org/10.1088/0029-5515/51/10/103023
https://doi.org/10.1088/0741-3335/47/10/013
https://doi.org/10.1088/0741-3335/47/10/013
https://doi.org/10.1088/0029-5515/50/5/054004
https://doi.org/10.1088/1741-4326/aaf07c
https://doi.org/10.1088/0741-3335/47/12B/S56
https://doi.org/10.1088/0741-3335/54/12/125002
https://scitation.org/journal/php

	s1
	s2
	s2A
	d1
	d2
	s2B
	d3
	d4
	s3
	d5
	t1
	t2
	s4
	f1
	f2
	f3
	f4
	s4A
	f5
	f6
	f7
	f8
	s4B
	d6
	d7
	s5
	f9
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45

